已知△ABC三边长分别为a,b,c,则|a+b-c|+|a-b+c|=______. 我来答 1个回答 #热议# 普通体检能查出癌症吗? 科创17 2022-08-10 · TA获得超过5899个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:175万 我也去答题访问个人页 关注 展开全部 ∵三角形三边的长是a、b、c, ∴a+b-c>0,a-b+c>0, ∴|a+b-c|-|a-b+c| =a+b-c+(a-b+c) =a+b-c+a-b+c =2a. 故答案为:2a. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-06-18 若△ABC的三边长分别为a,b,c,则|a-b-c|-|b-a-c|=______. 2022-09-11 若△ABC的三边长分别为a,b,c,且(a+b-c)·(a-c)=0,则△ABC是 2010-09-18 已知a,b,c,为△ABC的三边长,且(a-c):(a+b):(c-b)=-2:7:1,a+b+c=24 47 2011-07-22 已知△ABC的三边长分别为a﹑b﹑c 7 2013-08-31 已知△ABC的三边的长分别为a、b、c,且a/b+a/c=(b+c)/(b+c-a),则△ABC一定是()。 3 2011-05-07 △ABC的三边长分别为a b c 则|a-b-c|-|b-a-c|=___ 答案 求答案啊! 5 2010-08-26 已知△ABC三边长分别为a、b、c,且a>c,那么|c-a|-√(a+c-b)的平方=_______ 3 2012-08-04 设a,b,c是△ABC的三边长,求证:b^2c(b-c)+c^2a(c-a)+a^2b(a-b)>=0 6 为你推荐: