1x2+2x3+3x4+.....99x100=?
展开全部
1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100
=1*2+(2*3+3*4)+(4*5+5*6)+(6*7+7*8)+……+(98*99+99*100)
=2*1²+2*3²+2*5²+2*7²+2*9²+……+2*99²
=2*(1^2+3^2+5^2……+99^2)
而1²+3²+5²+..........(2n-1)²=n(4n^2-1)/3
这里 n=50
1-100所有奇数的平方和=50*(4*50^2-1)/3=166650
所以1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100 =166650*2=333300
==
你也可以
1x2+2x3+3x4+.....99x100
=1(1+1)+2(2+1)+……+99(99+1)
=1²+1+2²+2+……+99²+99
=(1²+2²+……+99²)+(1+2+……+99)
而
1²+2²+……n²=n(n+1)(2n+1)/6
(1+2+……+99)=n(n+1)/2
把n换成99代入就行
=1*2+(2*3+3*4)+(4*5+5*6)+(6*7+7*8)+……+(98*99+99*100)
=2*1²+2*3²+2*5²+2*7²+2*9²+……+2*99²
=2*(1^2+3^2+5^2……+99^2)
而1²+3²+5²+..........(2n-1)²=n(4n^2-1)/3
这里 n=50
1-100所有奇数的平方和=50*(4*50^2-1)/3=166650
所以1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100 =166650*2=333300
==
你也可以
1x2+2x3+3x4+.....99x100
=1(1+1)+2(2+1)+……+99(99+1)
=1²+1+2²+2+……+99²+99
=(1²+2²+……+99²)+(1+2+……+99)
而
1²+2²+……n²=n(n+1)(2n+1)/6
(1+2+……+99)=n(n+1)/2
把n换成99代入就行
展开全部
设(1X2)/2+(2X3)/2+(3X4)/2+.………………+(n+1)n/2=S
得1x2+2x3+3x4+………………+(n+1)n=2S
由n(n-1)+(n+1)n=n^2-n+n^2+n=2n^2
当n为偶数时S=2^2+4^2+6^2+8^2+………………+n^2
当n为奇数时S=2^2+4^2+6^2+8^2+………………+(n-1)^2+(n+1)n/2
当n为偶数时
假设M=2^2+4^2+6^2+8^2+………………+n^2
=4(1^2+2^2+3^2+4^2+………………+(n/2)^2)
=4*(1/6)(n/2)(n/2+1)(n+1)
=(1/6)n(n+1)(n+2)
所以我们可以得出结论
当n为偶数时
(1X2)/2+(2X3)/2+(3X4)/2+.....................+(n+1)n/2=(1/6)n(n+1)(n+2)
当n为奇数时
(1X2)/2+(2X3)/2+(3X4)/2+.....................+(n+1)n/2=(1/6)(n-1)n(n+1)+(n+1)n/2 当N=99时:
1x2+2x3+3x4+.....99x100=1/3(99-1)x99x(99+1)+99x(99+1)=333300
得1x2+2x3+3x4+………………+(n+1)n=2S
由n(n-1)+(n+1)n=n^2-n+n^2+n=2n^2
当n为偶数时S=2^2+4^2+6^2+8^2+………………+n^2
当n为奇数时S=2^2+4^2+6^2+8^2+………………+(n-1)^2+(n+1)n/2
当n为偶数时
假设M=2^2+4^2+6^2+8^2+………………+n^2
=4(1^2+2^2+3^2+4^2+………………+(n/2)^2)
=4*(1/6)(n/2)(n/2+1)(n+1)
=(1/6)n(n+1)(n+2)
所以我们可以得出结论
当n为偶数时
(1X2)/2+(2X3)/2+(3X4)/2+.....................+(n+1)n/2=(1/6)n(n+1)(n+2)
当n为奇数时
(1X2)/2+(2X3)/2+(3X4)/2+.....................+(n+1)n/2=(1/6)(n-1)n(n+1)+(n+1)n/2 当N=99时:
1x2+2x3+3x4+.....99x100=1/3(99-1)x99x(99+1)+99x(99+1)=333300
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1x2+2x3+3x4+…+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6
你令n=99,带入就可以了
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6
你令n=99,带入就可以了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1x2+2x3+3x4+4x5........99x100
=1/3*1*2*3+1/3*[2*3*4-1*2*3]+1/3[3*4*5-2*3*4]+...+1/3[99*100*101-98*99*100]
=1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+99*100*101-98*99*100]
=1/3*99*100*101
=3300*101
=333300
=1/3*1*2*3+1/3*[2*3*4-1*2*3]+1/3[3*4*5-2*3*4]+...+1/3[99*100*101-98*99*100]
=1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+....+99*100*101-98*99*100]
=1/3*99*100*101
=3300*101
=333300
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1x2+2x3+3x4+…+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6
1x2+2x3+3x4+…+99x100
=99x(99+1)x[(99x2+1)+3]/6
=9900x202/6
=333300
=1x(1+1)+2x(2+1)+3x(3+1)+…n(n+1)
=(1^2+2^2+3^2+…+n^2)+(1+2+3+…+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)[(2n+1)+3]/6
1x2+2x3+3x4+…+99x100
=99x(99+1)x[(99x2+1)+3]/6
=9900x202/6
=333300
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询