关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,b
关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,ba+b+ab=6,求(a-b)2+3ab-5的值...
关于x的一元二次方程x2+(2k-3)x+k2有两个不相等的实数根a,b
a+b+ab=6,求(a-b)2+3ab-5的值 展开
a+b+ab=6,求(a-b)2+3ab-5的值 展开
展开全部
本题考查的是一元二次方程根的判别式,根与系数的关系(韦达定理)。
---------------------------------------------------------------
解:∵方程x^2+(2k-3)x+k^2=0有两个不相等的实数根
∴△>0,即:(2k-3)^2-4k^2>0.
解得:k< 3/4.
又 a+b=-(2k-3),ab=k^2, 条件 a+b+ab=6 可化为:
-(2k-3)+k^2=6,整理为:k^2-2k-3=0
∴k1=3(不合题意,舍去),k2=-1
∴k=-1.∴a+b=5,ab=1.
∴(a-b)^2+3ab-5=(a+b)^2-ab-5=19
---------------------------------------------------------------
解:∵方程x^2+(2k-3)x+k^2=0有两个不相等的实数根
∴△>0,即:(2k-3)^2-4k^2>0.
解得:k< 3/4.
又 a+b=-(2k-3),ab=k^2, 条件 a+b+ab=6 可化为:
-(2k-3)+k^2=6,整理为:k^2-2k-3=0
∴k1=3(不合题意,舍去),k2=-1
∴k=-1.∴a+b=5,ab=1.
∴(a-b)^2+3ab-5=(a+b)^2-ab-5=19
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
2023-08-01 广告
鲎试剂灵敏度的测定值(λc).λc=1g-1(∑X/4)式中X为反应终点浓度的对数值(1g)。反应终点浓度是指系列递减的内毒素浓度中最后一个呈阳性结果的浓度。厦门鲎试剂生物科技股份有限公司是目前国内历史悠久的专业生产鲎试剂及配套产品的厂家。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询