月球向心加速度公式?

 我来答
泉来福永棋
2023-03-30 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:614万
展开全部
月-地检验的推导过程:
牛顿当年知道的数据:月球的公转周期T(T=27.3天),月地之间距离R=3.84*10^8米,地面附近的重力加速度g=9.8m/s^2,地球半径R地=6.4*10^6米(其实当年牛顿并不知道这个数据,他是根据海员用的方法来算地球的半径)
1、月球绕地球做圆周运动的向心力假如是由万有引力提供的,那么它的向心加速度a=GM/R2=g*R地^2/R^2=9.8*(6.4*10^6)^2/(3.84*10^8)^2m/s^2=2.72*10^(-3)m/s^2
(GM=g*R地^2,是黄金代换公式,M是地球质量,G引力常数)
2、根据月球绕地球做圆周运动,向心力公式得到:
a=(2πR/T)^2/R=4π^2R/T^2=4*π^2*3.84*10^8/(27.3*24*3600)^2m/s^2=2.74*10^(-3)m/s^2
在误差范围内这两种方法求得的向心加速度相同。
扩展资料:
月-地检验目的及来历:
为了验证地面上的重力与地球吸引月球、太阳吸引行星的力是同一性质的力,遵守同样的规律,牛顿做过著名的“月—地”
检验。
基本想法是:如果重力和星体间的引力是同一性质的力,都与距离的二次方成正比关系,那么月球绕地球做近似圆周运动的向心加速度就应该是地面重力加速度的1/3600,因为月心到地心的距离是地球半径的60倍。牛顿通过计算证明他的想法是正确的。
所谓月地检验是指牛顿当年思考的一个问题:月球是不是也受到地球的万有引力,这个万有引力和地面上物体受到的重力是不是一回事(只不过大小不同)。
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式