什么是数字黑洞

 我来答
爱好——问问
2010-10-09
知道答主
回答量:5
采纳率:0%
帮助的人:0
展开全部
黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。123数字黑洞
数字黑洞运算简单,结论明了,易于理解,故人们乐于研究。但有些证明却不那么容易。
举例
任取一个数,相继依次写下它所含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,最后必然停留在数123。 例:所给数字 14741029 第一次计算结果 448 第二次计算结果 303 第三次计算结果 123 数字黑洞495
只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么 你把这三个数字按大小重新排列,得出最大数和最小数。再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。
举例
举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495。 应该只是一种数字规律吧,像这样的还有狠多,比如四位数的数字黑洞6174: 把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。 例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。 任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。 如取四位数5679,按以上方法作运算如下: 9765-5679=4086 8640-4068=4572 7542-2457=5085 8550-5058=3492 9432-2349=7083 8730-3078=5652 6552-2556=3996 9963-3699=6264 6642-2466=4176 7641-1467=6174 那么,出现6174的结果究竟有什么科学依据呢? 设M是一个四位数而且四个数字不全相同,把M的数字按递减的次序排列, 记作M(减); 然后再把M中的数字按递增次序排列,记作M增,记差M(减)-M(增)=D1,从M到D1是经过上述步骤得来的,我们把它看作一种变换,从M变换到D1记作:T(M)= D1把D1视作M一样,按上述法则做减法得到D2 ,也可看作是一种变换,把D1变换成D2, 记作:T(D1)= D2 同样D2可以变换为D3;D3变换为D4……,既T(D2)= D3, T(D3)= D4…… 现在我们要证明,至多是重复7次变换就得D7=6174。
证明
证:四位数总共有104=10000个,其中除去四个数字全相同的,余下104-10=9990个数字不全相同.我们首先证明,变换T把这9990个数只变换成54个不同的四位数. 设a、b、c、d是M的数字,并: a≥b≥c≥d 因为它们不全相等,上式中的等号不能同时成立.我们计算T(M) M(减)=1000a+100b+10c+d M(增)=1000d+100c+10b+a T(M)= D1= M(减)-M(增)=1000(a-d)+100(b-c)+10(c-b)+d-a=999(a-d)+90(b-c) 我们注意到T(M)仅依赖于(a-d)与(b-c),因为数字a,b,c,d不全相等,因此由a≥b≥c≥d可推出;a-d>0而b-c≥0. 此外b、c在a与d之间,所以a-d≥b-c,这就意味着a-d可以取1,2,…,9九个值,并且如果它取这个集合的某个值n,b-c只能取小于n的值,至多取n. 例如,若a-d=1,则b-c只能在0与1中选到,在这种情况下,T(M)只能取值: 999×(1)+90×(0)=0999 999×(1)+90×(1)=1089 类似地,若a-d=2, T(M)只能取对应于b-c=0,1,2的三个值.把a-d=1,a-d=2,…,a-d=9的情况下b-c所可能取值的个数加起来,我们就得到2+3+4+…+10=54 这就是T(M)所可能取的值的个数.在54个可能值中,又有一部分是数码相同仅仅是数位不同的值,这些数值再变换T(M)中都对应相同的值(数学上称这两个数等价),剔除等价的因数,在T(M)的54个可能值中,只有30个是不等价的,它们是: 9990,9981,9972,9963,9954,9810,9711,9621,9531,9441,8820,8730,8721,8640,8622,8550, 8532,8442,7731,7641,7632,7551,7533,7443,6642,6552,6543,5553,5544. 对于这30个数逐个地用上述法则把它换成最大与最小数的差,至多6步就出现6174这个数.证毕. ----------------------------------------------------------------------------------数字黑洞153
任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数——153,我们称它为数字“黑洞”。
举例
例如:63是3的倍数,按上面的规律运算如下: 6^3+3^3=216+27=243, 2^3+4^3+3^3=8+64+27=99, 9^3+9^3=729+729=1458, 1^3+4^3+5^3+8^3=1+64+125+512=702 7^3+0^3+2^3=351, 3^3+5^3+1^3=153, 1^3+5^3+3^3=153, ... 现在继续运算下去,结果都为153,如果换另一个3的倍数,试一试,仍然可以得到同样的结论,因此153被称为一个数字"黑洞". 个人在思考6174之谜时,突破点就是上面提到的495的规律。我发现无论是三位、还是四位、五位。都或多或少有自己的规律。个人认为规律的根本原因在于数字的重新排列,正是这种正反序列相减,再加上十进制的原则,让它变得有规律。

参考资料: 百度

悦宝贝2
2010-10-08
知道答主
回答量:21
采纳率:0%
帮助的人:9.3万
展开全部
  黑洞数又称陷阱数,是类具有奇特转换特性的整数。 任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。"重排求差"操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。
  举个例子,三位数的黑洞数为495
  简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693
  按上面做法再做一次,得到594,再做一次,得到495
  之后反复都得到495
  再如,四位数的黑洞数有6174
  但是,五位数及五位以上的数还没有找到对应的黑洞数
  随便造一个四位数,如a1=1628,先把组成部分1628的四个数字由大到小排列得到a2=8621,再把1628的四个数字由小到大排列得a3=1268,用大的减去小的a2-a1=8621-1268=7353,把7353按上面的方法再作一遍,由大到小排列得7533,由小到大排列得3357,相减7533-3367=4176
  把4176再重复一遍:7641-1467=6174。
  如果再往下作,奇迹就出现了!7641-1467=6174,又回到6174。
  这是偶然的吗?我们再随便举一个数1331,按上面的方法连续去做:
  3311-1133=2178 8721-1278=7443 7443-3447=3996 9963-3699=6264
  6642-2466=4176 7641-1467=6174
  好啦!6174的“幽灵”又出现了,大家不妨试一试,对于任何一个数字不完全的四位数,最多运算7步,必然落入陷阱中。
  这个黑洞数已经由印度数学家证明了。
  在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
  苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。

参考资料: 百科

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式