一元二次方程的通解怎么求?
1个回答
展开全部
∵dy/dx=4xy/(x^2+y^2),∴dx/dy=(x^2+y^2)/(4xy),∴4dx/dy=x/y+y/x。
令x/y=u,则x=uy,∴dx/dy=u+ydu/dy,∴4u+4ydu/dy=u+1/u,
∴4ydu/dy=1/u-3u=(1-3u^2)/u,∴[4u/(1-3u^2)]du=(1/y)dy,
∴2∫[1/(1-3u^2)]d(u^2)=∫(1/y)dy,
∴-(2/3)∫[1/(1-3u^2)]d(1-3u^2)=ln|y|+lnC,
∴-(2/3)ln|1-3u^2|=ln|Cy|,∴|1-3u^2|^(-2/3)=|Cy|,
∴|1-3x^2/y^2|^(-2/3)=Cy,∴|(y^2-3x^2)/y^2|^(-2/3)=Cy,
∴[y^4/(y^2-3x^2)^2]^(1/3)=Cy,∴y^4/(y^2-3x^2)^2=Cy^3,
∴y=C(y^2-3x^2)^2。
∴原微分方程的通解是:y=C(y^2-3x^2)^2。
-----
方法二:
∵dy/dx=4xy/(x^2+y^2)=4/(x/y+y/x),
∴可令y/x=u,则:y=xu,∴dy/dx=u+xdu/dx=4/(u+1/u)=4u/(1+u^2),
∴xdu/dx=4u/(1+u^2)-u=u(4-1-u^2)/(1+u^2)=u(3-u^2)/(1+u^2),
∴{(1+u^2)/[u(3-u^2)]}du=(1/x)dx,
∴{[4-(3-u^2)]/[u(3-u^2)]}du=(1/x)dx,
∴{4/[u(3-u^2)]}du-(1/u)du=(1/x)dx,
∴∫{4/[u(3-u^2)]}du-∫(1/u)du=∫(1/x)dx,
∴2∫{1/[u^2(3-u^2)]}d(u^2)-ln|u|=ln|x|+lnC,
∴(2/3)∫[1/u^2+1/(3-u^2)]d(u^2)-ln|u|=ln|x|+lnC,
∴(2/3)ln(u^2)-(2/3)ln|3-u^2|-ln|u|=ln|x|+lnC,
∴u^(4/3)/[|u|(3-u^2)^(2/3)]=C|x|,
∴u^4/[u^3(3-u^2)^2]=Cx^3,
∴u/(3-u^2)^2=Cx^3,∴(y/x)/[3-(y/x)^2]^2=Cx^3,
∴y/x=Cx^3[3-(y/x)^2]^2,∴y=C(3x^2-y^2)^2=C(y^2-3x^2)。
∴原微分方程的通解是:y=C(y^2-3x^2)。
令x/y=u,则x=uy,∴dx/dy=u+ydu/dy,∴4u+4ydu/dy=u+1/u,
∴4ydu/dy=1/u-3u=(1-3u^2)/u,∴[4u/(1-3u^2)]du=(1/y)dy,
∴2∫[1/(1-3u^2)]d(u^2)=∫(1/y)dy,
∴-(2/3)∫[1/(1-3u^2)]d(1-3u^2)=ln|y|+lnC,
∴-(2/3)ln|1-3u^2|=ln|Cy|,∴|1-3u^2|^(-2/3)=|Cy|,
∴|1-3x^2/y^2|^(-2/3)=Cy,∴|(y^2-3x^2)/y^2|^(-2/3)=Cy,
∴[y^4/(y^2-3x^2)^2]^(1/3)=Cy,∴y^4/(y^2-3x^2)^2=Cy^3,
∴y=C(y^2-3x^2)^2。
∴原微分方程的通解是:y=C(y^2-3x^2)^2。
-----
方法二:
∵dy/dx=4xy/(x^2+y^2)=4/(x/y+y/x),
∴可令y/x=u,则:y=xu,∴dy/dx=u+xdu/dx=4/(u+1/u)=4u/(1+u^2),
∴xdu/dx=4u/(1+u^2)-u=u(4-1-u^2)/(1+u^2)=u(3-u^2)/(1+u^2),
∴{(1+u^2)/[u(3-u^2)]}du=(1/x)dx,
∴{[4-(3-u^2)]/[u(3-u^2)]}du=(1/x)dx,
∴{4/[u(3-u^2)]}du-(1/u)du=(1/x)dx,
∴∫{4/[u(3-u^2)]}du-∫(1/u)du=∫(1/x)dx,
∴2∫{1/[u^2(3-u^2)]}d(u^2)-ln|u|=ln|x|+lnC,
∴(2/3)∫[1/u^2+1/(3-u^2)]d(u^2)-ln|u|=ln|x|+lnC,
∴(2/3)ln(u^2)-(2/3)ln|3-u^2|-ln|u|=ln|x|+lnC,
∴u^(4/3)/[|u|(3-u^2)^(2/3)]=C|x|,
∴u^4/[u^3(3-u^2)^2]=Cx^3,
∴u/(3-u^2)^2=Cx^3,∴(y/x)/[3-(y/x)^2]^2=Cx^3,
∴y/x=Cx^3[3-(y/x)^2]^2,∴y=C(3x^2-y^2)^2=C(y^2-3x^2)。
∴原微分方程的通解是:y=C(y^2-3x^2)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询