不定积分如何转化为定积分?
1个回答
展开全部
先求不定积分,用分部积分
∫xe^xdx
=∫xde^x
=xe^x-∫e^xdx
=xe^x-e^x+C
=(x-1)*e^x+C
所以原式=(1-1)*e^1-(0-1)*e^0
=0+1
=1
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询