ab(a+b)+bc(b+c)+ca(c+a)≥6abc

如何证明... 如何证明 展开
M立龙
2010-10-08
知道答主
回答量:21
采纳率:0%
帮助的人:0
展开全部
解:不等式左边展开得:(字母后的2表示次方)a2b+ab2+b2c+bc2+a2c+c2a=b(a2+c2)+c(b2+a2)+a(b2+c2) 因为b(a2+c2)大于等于b*2*根号下a2c2=2abc(1) c(b2+a2)大于等于c*2*根号下b2a2=2abc(2) a(b2+c2)大于等于a*2*根号下b2c2=2abc(3) (1)+(2)+(2)大于等于6abc=左边,所以原式得证!
leng1024715028
2010-10-09
知道答主
回答量:40
采纳率:0%
帮助的人:20.2万
展开全部
把左边的数据拆开,再合并就可以了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式