空间向量距离公式
求单位向量公式单位向量公式a0=向量a/向量a的模长。
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。一个非零向量除以它的模,可得所需单位向量。一个单位向量的平面直角坐标系上的坐标表示可以是:(n,k),则有n²+k²=1。
在数学中,向量(也称为欧几里得向量、几何向量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
向量的相关定义:
相等向量:长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。规定所有的零向量都相等。当用有向线段表示向量时,起点可以任意选取。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。同向且等长的有向线段都表示相同向量。
自由向量:始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。在自由向量的意义下,相等的向量都看作是同一个向量。数学中只研究自由向量。