求收敛域的三个步骤

 我来答
秦子筱
2023-07-11 · 我是一个小小的答题小能手~
秦子筱
采纳数:35520 获赞数:4450

向TA提问 私信TA
展开全部

求收敛域的三个步骤如下:

1.确定级数的系数通项表达式;2.根据系数通项表达式得到第n+1个系数的表达式;3.利用收敛半径公式,带入系数表达式求收敛半径R;4.在原级数中带入x=-R判断x=-R处左端点的收敛性;5.在原级数中带入x=R判断x=R处右端点的收敛性;6.综合左右端点收敛性和收敛半径得到级数的收敛域。

用第n+1项除以第n项,整个的绝对值,小于1,解出x(或x-a这决定于你级数的展开)的绝对值小于的值就是收敛半径。收敛域就是求使其收敛的所有的点构成的区域。

1、收敛半径r是一个非负的实数或无穷大,使得在 |z -a| <r时幂级数收敛,在 |z -a| >r时幂级数发散。幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。

2、如果幂级数中的幂次是按自然数顺序依次递增的,即该级数是不缺项的幂级数,可用两种方法即系数模比值法和系数模根值法求其收敛半径R。如果幂级数中的幂次不是按自然数的顺序依次递增的(比如缺奇次幂或缺偶次幂等)必须直接使用比值审敛法。

3、因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于每个收敛点对应的函数项级数的收敛性的判定,其实对应的就是常值级数收敛性的判定,所以函数项级数的收敛域的计算一般基于常值级数判定的方法,常用的是基于取项的绝对值的比值审敛法与根值判别法。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式