如图,在等腰RT△ABC中,AD⊥BC,PE⊥AB,PF⊥AC,则△DEF是什么三角形
1个回答
2010-10-08
展开全部
△DEF是等腰直角三角形
证明:
∵△ABC是等腰直角三角形,AD⊥BC
∴∠DAF=∠B=45°AD=BD
∵PE⊥AB,PF⊥AC
∴四边形AEPF是矩形
∴AF=PE
∵∠B=45°
∴PF=BE
∴AF=BE
∴△BED≌△AFD
∴DE=DF,∠BDE=∠ADF
∵∠BDE+∠ADE=90°
∴∠ADF+∠ADE=90°
∴△DEF是等腰直角三角形
证明:
∵△ABC是等腰直角三角形,AD⊥BC
∴∠DAF=∠B=45°AD=BD
∵PE⊥AB,PF⊥AC
∴四边形AEPF是矩形
∴AF=PE
∵∠B=45°
∴PF=BE
∴AF=BE
∴△BED≌△AFD
∴DE=DF,∠BDE=∠ADF
∵∠BDE+∠ADE=90°
∴∠ADF+∠ADE=90°
∴△DEF是等腰直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询