已知点Q(2,0)和圆O:x^2+y^2=1,动点M到圆O的切线长与|MQ|的比为根号2,求动点M的轨迹方程

手机用户60917
2013-12-22 · 超过61用户采纳过TA的回答
知道答主
回答量:112
采纳率:100%
帮助的人:58.2万
展开全部
设M(x,y) 即m到圆O的切线长 根据勾股定理为 原点到M的距离平方减去圆的半径 然后在开根号 即为根号下x^2+y^2-1 , MQ=根号下(x-2)^2+y^2 切线长与MQ的比为根号2,代入得根号x^2+y^2-1/根号(x-2)^2+y^2 =根号2 即X^2+Y^2-8X+9=0. 即为动点M的轨迹方程!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式