集合的含义与表示方法
6个回答
2013-11-04
展开全部
1. 集合的概念
1.1 集合的概念:一组对象的全体称为集合,其中每一个对象称为集合的元素。
2.2记法:集合通常用拉丁字母A,B,C…表示,元素用小写的拉丁字母a,b,c…表示。
常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
2.3 元素与集合之间的关系:(元素与集合的关系有“属于 ”及“不属于 两种)
⑴若a是集合A中的元素,则称a属于集合A,记作a A;
⑵若a不是集合A的元素,则称a不属于集合A,记作a A。
2. 集合元素的三个性质:确定性、互异性、无序性。
⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.
⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.
如:方程(x-2)(x-1)2=0的解集表示为{1,-2} ,而不是{1,1,-2}
⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
3. 集合的表示方法
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征
1.1 集合的概念:一组对象的全体称为集合,其中每一个对象称为集合的元素。
2.2记法:集合通常用拉丁字母A,B,C…表示,元素用小写的拉丁字母a,b,c…表示。
常用的数集及记法:
非负整数集(或自然数集),记作N;
正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R;
2.3 元素与集合之间的关系:(元素与集合的关系有“属于 ”及“不属于 两种)
⑴若a是集合A中的元素,则称a属于集合A,记作a A;
⑵若a不是集合A的元素,则称a不属于集合A,记作a A。
2. 集合元素的三个性质:确定性、互异性、无序性。
⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.
⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.
如:方程(x-2)(x-1)2=0的解集表示为{1,-2} ,而不是{1,1,-2}
⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
3. 集合的表示方法
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询