设x1=-1/2,xn+1=(xn+1)^2-1,n=1,2,3……证明函数极限limn→∞xn存在,并求之 10

 我来答
wendyhx
2014-04-27 · TA获得超过6724个赞
知道大有可为答主
回答量:3151
采纳率:91%
帮助的人:2080万
展开全部
先用数归证1<xn<=2
n=1显然成立
假设n=k成立
则1<xk<=2
n=k+1
x(k+1)=1/2(xk+1/xk)
因为1<xk<=2
1/2<1/xk<=1
1<3/2=(1+1/2)/2<x(k+1)=1/2(xk+1/xk)<=1/2(2+1)=3/2<2
所以对于n=k+1也成立 1<x(k+1)<=2
所以xn是有界数列
下证其单调减
xn+1-xn
=1/2(xn+1/xn)-xn
=1/2(xn+1/xn-2xn)
=1/2(1/xn-xn)
=(1-xn^2)/(2xn)<0,因为刚证过xn>1
所以xn是一单调有界数列
所以极限必存在(单调有界必有极限)

令n->∞
极限x=limn->∞ xn满足
x=1/2(x+1/x)
2x=x+1/x
x=1/x
x^2=1
x=1(舍去负值,因为xn>1)
所以极限为1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式