已知正项数列an满足:a²n-(n²+n-1)an-(n²+n)=0(n∈N+),数列bn的前n项
已知正项数列an满足:a²n-(n²+n-1)an-(n²+n)=0(n∈N+),数列bn的前n项和为Sn,且满足b1=1,2Sn=1+bn...
已知正项数列an满足:a²n-(n²+n-1)an-(n²+n)=0(n∈N+),数列bn的前n项和为Sn,且满足b1=1,2Sn=1+bn(n∈N+) 求an和bn的通向公式
展开
展开全部
an²-(n²+n-1)an-(n²+n)=0
(an +1)[an-(n²+n)]=0
an=-1(数列为正项数列,an>0,舍去)或an=n²+n
数列{an}的通项公式为an=n²+n
2Sn=1+bn
时,2b1=2S1=1+b1
b1=1
n≥2时,
2bn=2Sn-2S(n-1)=1+bn-[1+b(n-1)]
2bn=bn-b(n-1)
bn=-b(n-1)
bn/b(n-1)=-1,为定值
数列{bn}是以1为首项,-1为公比的等比数列,bn=1×(-1)^(n-1)=(-1)^(n-1)
数列{bn}的通项公式为bn=(-1)^(n-1)
(an +1)[an-(n²+n)]=0
an=-1(数列为正项数列,an>0,舍去)或an=n²+n
数列{an}的通项公式为an=n²+n
2Sn=1+bn
时,2b1=2S1=1+b1
b1=1
n≥2时,
2bn=2Sn-2S(n-1)=1+bn-[1+b(n-1)]
2bn=bn-b(n-1)
bn=-b(n-1)
bn/b(n-1)=-1,为定值
数列{bn}是以1为首项,-1为公比的等比数列,bn=1×(-1)^(n-1)=(-1)^(n-1)
数列{bn}的通项公式为bn=(-1)^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询