计算(3+1)(3平方+1)(3的4次方+1)(3的8次方+1)……(3的n次方+1) 的值。
1个回答
展开全部
(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^4-1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^8-1)(3^8+1)...(3^2n+1)/(3-1)
=(3^16-1)...(3^2)^n+1)/(3-1)
=[(3^2)^2n+1]/2
=(81^n +1)/2
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^4-1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^8-1)(3^8+1)...(3^2n+1)/(3-1)
=(3^16-1)...(3^2)^n+1)/(3-1)
=[(3^2)^2n+1]/2
=(81^n +1)/2
追答
(3+1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)
=(3^2-1)(3^2+1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^4-1)(3^4+1)(3^8+1)...(3^2n+1)/(3-1)
=(3^8-1)(3^8+1)...(3^2n+1)/(3-1)
=(3^16-1)...(3^2)^n+1)/(3-1)
=[(3^2)^2n+1]/2
=(81^n +1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询