∫coslnxdx的不定积分是什么?
展开全部
先做变换lnx=t,x=e^t,dx=e^tdt,
∫coslnxdx=∫cost*e^tdt,
再分部积分两次,
∫cost*e^tdt=e^t*sint-∫sint*e^tdt
=e^t*sint-[-e^t*cost+∫cost*e^tdt],
移项,
2∫cost*e^tdt=e^t(sint+cost)+2C,
∫cost*e^tdt=e^t(sint+cost)/2+C,
∫coslnxdx=x(sinlnx+coslnx)/2+C.
∫coslnxdx=∫cost*e^tdt,
再分部积分两次,
∫cost*e^tdt=e^t*sint-∫sint*e^tdt
=e^t*sint-[-e^t*cost+∫cost*e^tdt],
移项,
2∫cost*e^tdt=e^t(sint+cost)+2C,
∫cost*e^tdt=e^t(sint+cost)/2+C,
∫coslnxdx=x(sinlnx+coslnx)/2+C.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询