π是怎么算出来的?请问各位大师
展开全部
“π”(3.1415)是由我国古代数学家祖冲之的割圆术求出来的。
我国古代数学家祖冲之,以圆的内接正多边形的周长来近似等于圆的周长,从而得出π的精确到小数点第七位的值。
π=圆周长/直径≈内接正多边形/直径。当正多边形的边长越多时,其周长就越接近于圆的周长。祖冲之算得的π值在绝大多数的实际应用中已经非常精确。
扩展资料
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
65年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
参考资料:百度百科——圆周率
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
在数学史上,圆周率π的精确度,始终引起人们极大的关注,并成为衡量一个国家数学发展水平的标志.纵观π的计算史,其计算方法大致可分为:几何法、解析法、实验法、电子计算机计算法.
一、几何法 在公元前240年左右,阿基米德在他的《圆的度量》一书中首先采用”穷竭法”求π的值.“穷竭法”即用圆的内接和外切正多边形周长逼近圆周长.他作出了正96边形,并由此得到π的值为
术”即用圆的内接正多边形的面积逼近圆的面积.他算到了正192边形
祖冲之在刘徽工作的基础上,求出圆内接正12288边形和正24576边形的面积,得到
3.1415926<π<3.1415927.
祖冲之的π值纪录,保持了将近一千年.直到公元1427年中亚数学家阿尔·卡西计算了圆内接和外切正3×228边形的周长后,得到π值的17位小数.公元1610年,德国人鲁道夫花费了毕生精力,计算了正262边形的周长后,得到π的35 位小数值.鲁道夫的工作,表明了几何法求π的方法己走到尽头.1630年格林贝格(Grien berger)用几何法计算π至 39位小数.这是几何法的最后尝试,也是几何法的最高纪录.
二、解析法 圆周率计算上的第一次突破,是以手求π的解析表达式开始的.著名法国数学家韦达(1540—1603)做出了开创性的工作.在《数学定律,应用于三角形》一书中,得到了
他计算出3.1415926535<π<3.1415926537.显然他的π精确度不是当时世界领先水平,但利用一个无穷级数去刻划π值却开创了一个崭新的方向.
1671年,英国圣安德鲁大学教学教授格雷戈里(1638—1675)提出了著名的级数:
但他并未注意到,当x=1时,这一级数为:
格雷戈里的工作具有普遍性,成为解析法求π值的基础.在后来的二百多年里,许多人利用这一公式稍作修改并进行大量计算.不断刷新π值的世界纪录,1706年,英国的梅钦(1680—1751)利用格氏级数及其
破π的百位大关.继此之后,利用反正切展开式计算π的公式相继出现,π的位数也直线上升.1948年1月,英国的弗格森(D.F.Fergnson)与美国的伦奇(J.W.Wrench)用解析法得到π的 808位准确值,创造了甲级数方法的最高纪录,结束了用级数方法计算π值的阶段.这也是手工计算π的最高纪录,此后再没有人用手算与他们较量了.
三、实验法 1777年法国自然科学家蒲丰(1707—1788)出版了《能辨是非的算术实验》一书,提出了著名的“蒲丰实验”:在画有一组距离为a的平行线的平面上,随意投下长度为l(l<a)的针.若投
1901年意大利数学家拉兹瑞尼用蒲丰的方法,仅投针3408次就轻松地得到π=3.1415929.这与π的精确值相比,一直到小数点后第七位才出现不同.
尽管这一方法远不如解析法便捷,且π的精确度也大为逊色.但它揭示了分析方法与概率方法之间的联系,向人们暗示了数学本质的某种统一性,促使人们深入探讨π的种种性质.开辟了π研究的新方向.
四、电子计算机计算法
自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃.1949年,美国人赖脱威逊利用ENIAC计算机花了70个小时把π算到2034位,一下子就突破了千位大关,1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位,1996年东京大学的一组数学家曾花了36个小时,在计算机上算出了π的32.3亿位小数.但是将前纪录保待了4年之久的美国数学家丘德诺夫斯基兄弟采用了新方法又获得了超过40亿位数的π.现在人们利用电子计算机将π算到了小数点后42.9亿多.如果把这一串数字打印出来,每厘米打印六个数字,那么整个数字的长度接近7200千米.比从德国柏林到美国芝加哥的距离还长.
不过电子计算机只是工具,它仍需用解析法的公式,可算是解析法的延伸和发展.其实这时π的计算变成了算法的精巧构思和机器速度的较量.除了显示电子计算机威力和检验机器效果之外,π的位数已无任何现实价值.
从π的计算可以看出,计算方法的每一次创新,都带来π的位数的巨大突破,但每一种方法都有上限:几何法因人们测量误差而不可能超过百位;解析法又因计算量聚增而局限于千位之内;实验法的指导意义大于它的实用价值;电子计算机同样受机器速度的影响,而不可能无限制地算出π值.
一、几何法 在公元前240年左右,阿基米德在他的《圆的度量》一书中首先采用”穷竭法”求π的值.“穷竭法”即用圆的内接和外切正多边形周长逼近圆周长.他作出了正96边形,并由此得到π的值为
术”即用圆的内接正多边形的面积逼近圆的面积.他算到了正192边形
祖冲之在刘徽工作的基础上,求出圆内接正12288边形和正24576边形的面积,得到
3.1415926<π<3.1415927.
祖冲之的π值纪录,保持了将近一千年.直到公元1427年中亚数学家阿尔·卡西计算了圆内接和外切正3×228边形的周长后,得到π值的17位小数.公元1610年,德国人鲁道夫花费了毕生精力,计算了正262边形的周长后,得到π的35 位小数值.鲁道夫的工作,表明了几何法求π的方法己走到尽头.1630年格林贝格(Grien berger)用几何法计算π至 39位小数.这是几何法的最后尝试,也是几何法的最高纪录.
二、解析法 圆周率计算上的第一次突破,是以手求π的解析表达式开始的.著名法国数学家韦达(1540—1603)做出了开创性的工作.在《数学定律,应用于三角形》一书中,得到了
他计算出3.1415926535<π<3.1415926537.显然他的π精确度不是当时世界领先水平,但利用一个无穷级数去刻划π值却开创了一个崭新的方向.
1671年,英国圣安德鲁大学教学教授格雷戈里(1638—1675)提出了著名的级数:
但他并未注意到,当x=1时,这一级数为:
格雷戈里的工作具有普遍性,成为解析法求π值的基础.在后来的二百多年里,许多人利用这一公式稍作修改并进行大量计算.不断刷新π值的世界纪录,1706年,英国的梅钦(1680—1751)利用格氏级数及其
破π的百位大关.继此之后,利用反正切展开式计算π的公式相继出现,π的位数也直线上升.1948年1月,英国的弗格森(D.F.Fergnson)与美国的伦奇(J.W.Wrench)用解析法得到π的 808位准确值,创造了甲级数方法的最高纪录,结束了用级数方法计算π值的阶段.这也是手工计算π的最高纪录,此后再没有人用手算与他们较量了.
三、实验法 1777年法国自然科学家蒲丰(1707—1788)出版了《能辨是非的算术实验》一书,提出了著名的“蒲丰实验”:在画有一组距离为a的平行线的平面上,随意投下长度为l(l<a)的针.若投
1901年意大利数学家拉兹瑞尼用蒲丰的方法,仅投针3408次就轻松地得到π=3.1415929.这与π的精确值相比,一直到小数点后第七位才出现不同.
尽管这一方法远不如解析法便捷,且π的精确度也大为逊色.但它揭示了分析方法与概率方法之间的联系,向人们暗示了数学本质的某种统一性,促使人们深入探讨π的种种性质.开辟了π研究的新方向.
四、电子计算机计算法
自从第一台电子计算机ENIAC在美国问世之后,立刻取代了繁杂的π值的人工计算,使π的精确度出现了突飞猛进的飞跃.1949年,美国人赖脱威逊利用ENIAC计算机花了70个小时把π算到2034位,一下子就突破了千位大关,1955年,一台快速计算机竟在33个小时内。把π算到10017位,首次突破万位,1996年东京大学的一组数学家曾花了36个小时,在计算机上算出了π的32.3亿位小数.但是将前纪录保待了4年之久的美国数学家丘德诺夫斯基兄弟采用了新方法又获得了超过40亿位数的π.现在人们利用电子计算机将π算到了小数点后42.9亿多.如果把这一串数字打印出来,每厘米打印六个数字,那么整个数字的长度接近7200千米.比从德国柏林到美国芝加哥的距离还长.
不过电子计算机只是工具,它仍需用解析法的公式,可算是解析法的延伸和发展.其实这时π的计算变成了算法的精巧构思和机器速度的较量.除了显示电子计算机威力和检验机器效果之外,π的位数已无任何现实价值.
从π的计算可以看出,计算方法的每一次创新,都带来π的位数的巨大突破,但每一种方法都有上限:几何法因人们测量误差而不可能超过百位;解析法又因计算量聚增而局限于千位之内;实验法的指导意义大于它的实用价值;电子计算机同样受机器速度的影响,而不可能无限制地算出π值.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如果π是表示正6x2ⁿ边形的周长与过中心点的对角线的比,那么π值就是3.1415926...。此比值是根据正6x2ⁿ边形的周长和过中心点的对角线之间的比例关系算出来的,为正6x2ⁿ边率。
如果π是代表圆的周长与直径的比,那么π值就是3分之6+2√3或是3.1547005383...。此比值是根据圆的周长和直径之间的比例关系算出来的,为圆周率。
注意:正6x2ⁿ边形的对角线与圆的直径相等时,不等于正6x2ⁿ边率就是圆周率。
如果π是代表圆的周长与直径的比,那么π值就是3分之6+2√3或是3.1547005383...。此比值是根据圆的周长和直径之间的比例关系算出来的,为圆周率。
注意:正6x2ⁿ边形的对角线与圆的直径相等时,不等于正6x2ⁿ边率就是圆周率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
为了简便计算,假设圆的半径是单位1。然后作其 内切正X边形,可以算出正X变形的周长=2Xsin(180/X)
当X越大 就越接近于圆的周长。
然后用上式除以直径(2)就得到π啦
最后π=X*sin(180/X) (X越大π值越精准)
当X越大 就越接近于圆的周长。
然后用上式除以直径(2)就得到π啦
最后π=X*sin(180/X) (X越大π值越精准)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
早在一千多年前我国著名科学家祖冲就发现了圆周率π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询