如图 在三角形ABC中 角BAC=90度 D是BC中点,AE垂直AD交CB的延长线于点E 找出图中
如图在三角形ABC中角BAC=90度D是BC中点,AE垂直AD交CB的延长线于点E找出图中的相似三角形并证明!!!!!!!...
如图 在三角形ABC中 角BAC=90度 D是BC中点,AE垂直AD交CB的延长线于点E 找出图中的相似三角形并证明!!!!!!!
展开
展开全部
证明:1、因角BAC=90度,AE垂直AD, AE交CB延长线于点E,
所以角EAB=角CAD。
又因角BAC=90度 D是BC中点,所以角C=角CAD。
所以角EAB=角ECA(角C)。
因角E为公共角,所以:△EAB~△ECA。
2、三角形ABE和三角形ADC一定相似。
因三角形EAB相似于三角形ECA,所以角EAB=角ECA=角DCA。
因AD为直角三角形的中线,所以BD=AD。所以角DBA=角DAB。
又因角EBA=角BDA+角BAD=角BDA+角BAD=角ADC,
所以三角形ABE和三角形ADC一定相似。
如果满意记得好评哦!
望采纳~
谢谢~~
所以角EAB=角CAD。
又因角BAC=90度 D是BC中点,所以角C=角CAD。
所以角EAB=角ECA(角C)。
因角E为公共角,所以:△EAB~△ECA。
2、三角形ABE和三角形ADC一定相似。
因三角形EAB相似于三角形ECA,所以角EAB=角ECA=角DCA。
因AD为直角三角形的中线,所以BD=AD。所以角DBA=角DAB。
又因角EBA=角BDA+角BAD=角BDA+角BAD=角ADC,
所以三角形ABE和三角形ADC一定相似。
如果满意记得好评哦!
望采纳~
谢谢~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询