知道十三个未解决的数学问题吗?

Maple_Bless
2014-09-05 · TA获得超过1624个赞
知道小有建树答主
回答量:231
采纳率:100%
帮助的人:224万
展开全部
专门找来一些参考资料,啰嗦就啰嗦点,不过可能对你有用!世界七大数学难题,还有世界数学最前沿问题。

一、千年难题。

"千僖难题"之一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

"千僖难题"之二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

"千僖难题"之三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是"单连通的",而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

"千僖难题"之四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

"千僖难题"之五:杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

"千僖难题"之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

"千僖难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

二、当今数学世界前沿问题。

数学前沿问题简介
一、20世纪数学研究的简单回顾

记者:林先生,您好。首先我们非常感谢您在百忙之中抽出时间接受这次访谈,为全国中小学教师介绍有关数学学科前沿的一些基本情况。科学研究跨入了新世纪的门槛,我们看到,各门学科一方面在回顾学科发展历程,另一方面也在展望本学科的发展前景。您从1956年进入中科院正式从事数学研究工作,到现在已经将近半个世纪,在这半个世纪里,您一直奋斗在数学研究的前沿。您能根据您这么多年对数学的研究,回顾一下20世纪数学的发展历程,在这个历程中,数学研究有哪些重大进展和重大成就?

林群:据您所说的,站在数学内部看,上个世纪的数学必须归结到1900年8月6日,在巴黎召开的第二届国际数学家大会代表会议上,38岁的德国数学家希尔伯特(Hilbert, 1862--1943)所发表的题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题。这一演说成为世界数学史发展的里程碑,为20世纪的数学发展揭开了光辉的一页。在这23个问题中,头6个问题与数学基础有关,其他17个问题涉及数论、不定积分、二次型理论、不变式理论、微分方程、变分学等领域。

到了1905年,爱因斯坦创立了狭义相对论(事实上,有两位数学家,庞加莱和洛伦兹也已经走到了相对论的门口),1907年,他发现狭义相对论应用于物理学的其他领域都很成功,唯独不能应用于万有引力问题。为了解决这个矛盾,爱因斯坦转入了广义相对论的研究,并很快确立了“广义相对论”和“等效理论”,但数学上碰到的困难使他多年进展不大。大约在1911年前后,爱因斯坦终于发现了引力场和空间的几何性质有关,是时空弯曲的结果。因此爱因斯坦应用的数学工具是非欧几何。1915年,爱因斯坦终于用黎曼几何的框架,以及张量分析的语言完成了广义相对论。

还有您讲的德国女数学家诺特(Emmy Noether 1882~1935)发表的论文《Idealtheorie in Ringbereiche(环中的理想论)》标志着抽象代数现代化开端。她教会我们用最简单、最经济、最一般的概念和术语去进行思考:如同态、理想、算子环等等。

还有其它许多数学大成果。偷懒一点说,20世纪近50名菲尔兹数学奖得主的工作都是数学内部的大成果。但从数学以外,或从推动社会发展这个角度来看,也许与计算机的算法研究有关的数学,更有影响。这种研究发生在第二次世界大战前后,有三位数学家(图灵、哥德尔、冯.诺依曼),而不是工程师,由于对于计算机的诞生、设计和发展起了奠基和指导的作用,因此被列入20世纪“百年百星”的名单中。另外两位获得诺贝尔奖的纯数学家(康托洛维奇、纳什)也是与算法研究(或军事数学)有关,后者被拍成电影,刚获得奥斯卡奖。我国首届国家最高科技奖(不是数学奖)得主吴文俊的工作也包括了算法的研究。有一次在中国十大科技进展中有一项数学家堵丁柱的工作,也是有关算法的。值得注意的是,这些人都没有获得菲尔兹奖。

与算法研究(或军事数学)有关的,还有筹学、密码学以及大规模科学工程计算 等等。我怎么会有一个模模糊糊的感觉(被吴文俊感染的?),好象二十世纪中,以算法为主干的数学研究对于外部世界,科技和军事,有相当直接的影响。本世纪(信息、材料、生物)是否还会如此?等着瞧!
二、数学研究领域的重大难题

记者:刚才林院士为我们勾勒了二十世纪数学研究的图景。应该说在20世纪,无论是经典的数学分支,还是新兴的数学分支,都取得了相当大的进展。然而我们也看到,在数学研究的历程中,存在诸多遗憾,有多难题至今没有解决,或者没有得到完美的解决。林先生,在数学研究当中,您认为在数学领域存在着哪些重大难题?

林群:至于难题,应该说解决需要很大的决心,我以为我们科研工作者能做好自己的本职工作,上个世纪没有解决的难题,这个世纪也未必可以解决。应该说二十世纪是数学大发展的世纪。从报道上看,数学的许多重大难题得到了解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,象您所说的,数学家们深切感谢20世纪最伟大的数学大师大卫•希尔伯特。正如我们在开始谈到的,希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。

效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希望为新世纪数学的发展指明方向。

数学界也爱搞点新闻效应,2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的未必是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,1998年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特( Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题” 的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。

这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge) 猜想,庞加莱(Poincare) 猜想,黎曼(Rieman )假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。

“千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动(第一个问题就是关于计算机算法的一个基本理论)。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家,包括我国数学家,正在组织联合攻关。
三、数学研究领域的重大难题(续)

数学领域其他的难题可以说层出不穷,根据您提供的信息,简单的至少有以下几个:

第一个是哥德巴赫猜想

哥德巴赫(Goldbach)是德国一位数学家,生于1690年。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。

公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(<--emo&B)--> <--endemo--> 任何一个>=9之奇数,都可以表示成三个奇质数之和。

这就是著名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比36大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9+9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。

目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen's Theorem) 。即“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结论为大偶数可表示为 “1 + 2 ”的形式。

在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了 “9 + 9”。

1924年,德国的拉特马赫(Rademacher)证明了“7 + 7”。

1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6”。

1937年,意大利的蕾西(Ricei)先后证明了“5 + 7”, “4 + 9”, “3 + 15 ”和“2 + 366”。

1938年,苏联的布赫•夕太勃(Byxwrao)证明了“5 + 5”。

1940年,苏联的布赫•夕太勃(Byxwrao)证明了 “4 + 4”。

1948年,匈牙利的瑞尼(Renyi)证明了“1 + c”,其中c是一很大的自然数。

1956年,中国的王元证明了 “3 + 4”。

1957年,中国的王元先后证明了 “3 + 3 "和 "2 + 3”。

1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5”,不久,潘承洞和王元又证明了“1 + 4”。

1965年,苏联的布赫•夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),以及意大利的朋比利(Bombieri)证明了“1 + 3 ”。
1966年,中国的陈景润证明了“1 + 2”。

最终会由谁攻克“1 + 1”这个难题呢?现在还无法预测,不过,王元最近有一个演讲,说英国数学家正在绕道探讨,但愿有希望。

图1 大数学家欧拉

图2 青年人的榜样、
中国著名数学家陈景润
图3 著名数学家王元
图4法国数学家韦达

图6法国数学家达朗贝尔

第二个是连续统之谜

(注:文中将阿拉夫零记为alf(0),阿拉夫一记为alf(1),依次类推…)

由于alf(0)是无穷基数,阿拉夫是有异于有限运算的神奇运算,因而,以下的结果也不足为怪:

alf(0)+ 1 = alf(0)
alf(0) + n = alf(0)
alf(0) + alf(0) = alf(0)
alf(0) n = alf(0)
alf(0) alf(0) = alf(0)

alf(0)是自然数集的基数。一个无穷基数,只要是可数集,其基数必为alf(0)。由可排序性,可知如整数集、有理数集的基数为alf(0);或由它们的基数为alf(0),得它们为可数集。而实数集不可数(可由康托粉尘线反证不可数)推之存在比alf(0)更大的基数。乘法运算无法突破alf(0),但幂集可突破: = alf(1)。可以证明实数集的基数card(R) = alf(1)。进而,阿拉夫“家族”一发而不可收:

= alf(2); = alf(3); ……

alf(2)究竟有何意义?人们冥思苦想,得出空间所有曲线的数目。但而后的alf(3),人类绞尽脑汁,至今未能道出眉目来。此外,还有一个令人困惑的连续统之谜:“alf(0)与alf(1)之间是否还存在另一个基数?”

公元1878年,康托提出了这样的猜想:在alf(0)与alf(1)之间不存在其它的基数。但当时康托本人对此无法予以证实。

公元1900年,在巴黎召开的第二届国际数学家会议上,德国哥庭根大学教授希尔伯特提出了举世闻名的23个二十世纪须攻克的数学问题中,连续统假设显赫的排在第一个。然而这个问题的最终结果却是完全出人意料的。

公元1938年,奥地利数学家哥德尔证明了“连续统假设决不会引出矛盾”,意味着人类根本不可能找出连续统假设有什么错误。1963年,美国数学家柯亨居然证明了“连续统假设是独立的”,也就是说连续统假设根本不可能被证明。

哥德尔的工作太重要了,冯.诺依曼就是受他的影响来设计计算机。
用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

第四个是几何的三大问题

平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

几何三大问题是 :

1.化圆为方:求作一正方形使其面积等于一已知圆;

2.三等分任意角;

3.倍立方:求作一立方体使其体积是一已知立方体的二倍。

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π,所以化圆为方的问题等于去求一正方形其面积为π,也就是用尺规做出长度为 的线段(或者是π的线段)。

三大问题的第二个是三等分一个角的问题。对于某些角如 ,三等分并不难,但是否所有角都可以三等分呢?例如 ,若能三等分则可以做出 的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为 )。其实三等分角的问题是由求作正多边形这一类问题所引起来的。

第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
五、数学研究领域的重大难题(续)

第五个是费马最后定理

被公认执世界报纸牛耳地位的纽约时报于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是《在陈年数学困局中,终于有人呼叫“我找到了” 》 。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理。这个定理的内容是有关一个方程式 的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理): ,此处z表示一直角形之斜边,而x、y为其之两股,也就是一个直角三角形之斜边的平方等于它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13……等等。费马声称当n>2时,就找不到满足 的整数解,例如:方程式 就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快。

十九世纪时法国的法兰西斯数学院曾经在1815年和1860年两度悬赏金质奖章和三百法郎给任何解决此难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫斯克尔(P•Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,有效期间为100年。其间由于经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的“数学痴”。

二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数)。

虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终于解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决的。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明的。

50年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在80年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论由威利斯在1993年的6月21日于英国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊了整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,于是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终于交出完整无瑕的解答,数学界的梦魇终于结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最后定理是正确的(即 对n>3 均无正整数解),只需证 和 (P为奇质数)都没有整数解。
匿名用户
2014-09-05
展开全部
(1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)注一舒伯特(Schubert)计数演算的严格基础。 (17)代数曲线和曲面的拓扑研究。 (18)半正定形式的平方和表示。 (19)用全等多面体构造空间。 (20)正则变分问题的解是否总是解析函数? (21)研究一般边值问题。 (22)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (23)用自守函数将解析函数单值化。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
゛曾经的现在、视乎离ヽ
2014-09-05
知道答主
回答量:19
采纳率:0%
帮助的人:2.5万
展开全部
好深奥的问题。不会
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式