1个回答
展开全部
1)因为,x∈[0,π/2],
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又 a>0
所以, -2a+2a+b=-5
a+2a+b=1
解得: a=2, b=-5
(2) 由(1)知,f(x)=-4sin(2x+π/6)-1
由题意 g(x)=f(x+π/2)
=-4sin(2x+π+π/6)-1
=4sin(2x+π/6)-1>1
即 sin(2x+π/6)>1/2
所以 2x+π/6∈(2kπ+π/6,2kπ+5π/6)
单调增区间满足 2x+π/6∈(2kπ+π/6,2kπ+π/2]
单调减区间满足 2x+π/6∈[2kπ+π/2,2kπ+5π/6)
解得 g(x)的单调增区间为 (kπ,kπ+π/6]
单调减区间为 [kπ+π/6,kπ+π/3]
打字不易,如满意,望采纳.
2x+π/6∈[π/6,7π/6],
sin(2x+π/6)∈[-1/2,1],
又 a>0
所以, -2a+2a+b=-5
a+2a+b=1
解得: a=2, b=-5
(2) 由(1)知,f(x)=-4sin(2x+π/6)-1
由题意 g(x)=f(x+π/2)
=-4sin(2x+π+π/6)-1
=4sin(2x+π/6)-1>1
即 sin(2x+π/6)>1/2
所以 2x+π/6∈(2kπ+π/6,2kπ+5π/6)
单调增区间满足 2x+π/6∈(2kπ+π/6,2kπ+π/2]
单调减区间满足 2x+π/6∈[2kπ+π/2,2kπ+5π/6)
解得 g(x)的单调增区间为 (kπ,kπ+π/6]
单调减区间为 [kπ+π/6,kπ+π/3]
打字不易,如满意,望采纳.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询