已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、

已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△O... 已知:如图(1),在△ABC中,∠C=90°,BC=AC,点D、E分别在BC、AC边上,且CD=CE,连接AD、BE,点O、M、N分别是AB、AD、BE的中点.易证:△OMN是等腰直角三角形.(1)将图(1)中△CDE绕着点C顺时针旋转90°如图(2),连接AE、BD,O、M、N仍为AB、AD、BE中点,则△OMN是等腰直角三角形的结论是否发生变化?并说明理由.(2)若△CDE绕着点C顺时针继续旋转至图(3)所示位置时,O、M、N仍为AB、AD、BE中点,试问△OMN是等腰直角三角形的结论是否成立?(直接写出结论) 展开
 我来答
阿瑟5057
2014-12-18 · 超过62用户采纳过TA的回答
知道答主
回答量:199
采纳率:0%
帮助的人:133万
展开全部
(1)△OMN是等腰直角三角形.
理由如下:如图,连接BD,
∵△CDE顺时针旋转90°,
∴∠ACE=∠ACB=90°,
在△BCD和△ACE中,
BC=AC
∠ACE=∠ACB=90°
CD=CE

∴△BCD≌△ACE(SAS),
∴BD=AE,∠CBD=∠CAE,
∵O、M、N分别为AB、AD、BE中点,
∴OM∥BD且OM=
1
2
BD,ON∥AE且ON=
1
2
AE,
∴OM=ON,∠ABD=∠AOM,∠BAE=∠BON,
∴∠MON=180°-(∠AOM+∠BON)=180°-(∠ABD+∠BAE)=180°-(∠ABD+∠CBD+∠BAC)=180°-(∠ABC+∠BAC),
∵∠ACB=90°,
∴∠ABC+∠BAC=180°-∠ACB=180°-90°=90°,
∴∠MON=180°-90°=90°,
∴△OMN是等腰直角三角形;

(2)△OMN是等腰直角三角形的结论仍成立.
如图,连接BD、AE,证明方法与(1)相同.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式