二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其
二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.(1)求该二次函数的解析...
二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(-3,0)、B(1,0)两点,与y轴交于点C(0,-3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?
展开
展开全部
(1)∵抛物线与x轴交点为A(-3,0)、B(1,0),
∴抛物线解析式为:y=a(x+3)(x-1).
将点C(0,-3m)代入上式,得a×3×(-1)=-3m,∴m=a,
故抛物线的解析式为:y=m(x+3)(x-1)=mx2+2mx-3m.
(2)当m=2时,C(0,-6),抛物线解析式为y=2x2+4x-6,则P(x,2x2+4x-6).
设直线AC的解析式为y=kx+b,则有
,解得
,
∴y=-2x-6.
如答图①,过点P作PE⊥x轴于点E,交AC于点F,则F(x,-2x-6).
∴PF=yF-yP=(-2x-6)-(2x2+4x-6)=-2x2-6x.
S=S△PFA+S△PFC=
PF?AE+
PF?OE=
PF?OA=
(-2x2-6x)×3
∴S=-3x2-9x=-3(x+
)2+
故S与x之间的关系式为S=-3x2-9x,当x=-
时,S有最大值为
.
(3)∵y=mx2+2mx-3m=m(x+1)2-4m,
∴顶点D坐标为(-1,-4m).
如答图②,过点D作DE⊥x轴于点E,则DE=4m,OE=1,AE=OA-OE=2;
过点D作DF⊥y轴于点F,则DF=1,CF=OF-OC=4m-3m=m.
由勾股定理得:
AC2=OC2+OA2=9m2+9;
CD2=CF2+DF2=m2+1;
AD2=DE2+AE2=16m2+4.
∵△ACD与△BOC相似,且△BOC为直角三角形,
∴△ACD必为直角三角形.
i)若点A为直角顶点,则AC2+AD2=CD2,
即:(9m2+9)+(16m2+4)=m2+1,
整理得:m2=-
,
∴此种情形不存在;
ii)若点D为直角顶点,则AD2+CD2=AC2,
即:(16m2+4)+(m2+1)=9m2+9,
整理得:m2=
,
∵m>0,∴m=
∴抛物线解析式为:y=a(x+3)(x-1).
将点C(0,-3m)代入上式,得a×3×(-1)=-3m,∴m=a,
故抛物线的解析式为:y=m(x+3)(x-1)=mx2+2mx-3m.
(2)当m=2时,C(0,-6),抛物线解析式为y=2x2+4x-6,则P(x,2x2+4x-6).
设直线AC的解析式为y=kx+b,则有
|
|
∴y=-2x-6.
如答图①,过点P作PE⊥x轴于点E,交AC于点F,则F(x,-2x-6).
∴PF=yF-yP=(-2x-6)-(2x2+4x-6)=-2x2-6x.
S=S△PFA+S△PFC=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴S=-3x2-9x=-3(x+
3 |
2 |
27 |
4 |
故S与x之间的关系式为S=-3x2-9x,当x=-
3 |
2 |
27 |
4 |
(3)∵y=mx2+2mx-3m=m(x+1)2-4m,
∴顶点D坐标为(-1,-4m).
如答图②,过点D作DE⊥x轴于点E,则DE=4m,OE=1,AE=OA-OE=2;
过点D作DF⊥y轴于点F,则DF=1,CF=OF-OC=4m-3m=m.
由勾股定理得:
AC2=OC2+OA2=9m2+9;
CD2=CF2+DF2=m2+1;
AD2=DE2+AE2=16m2+4.
∵△ACD与△BOC相似,且△BOC为直角三角形,
∴△ACD必为直角三角形.
i)若点A为直角顶点,则AC2+AD2=CD2,
即:(9m2+9)+(16m2+4)=m2+1,
整理得:m2=-
1 |
2 |
∴此种情形不存在;
ii)若点D为直角顶点,则AD2+CD2=AC2,
即:(16m2+4)+(m2+1)=9m2+9,
整理得:m2=
1 |
2 |
∵m>0,∴m=
|