已知函数f(x)=lnx-ax(Ⅰ)若f(x)在[1,e]上的最小值为32,求a的值;(Ⅱ)若f(x)<x2在(1,+∞)上

已知函数f(x)=lnx-ax(Ⅰ)若f(x)在[1,e]上的最小值为32,求a的值;(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.... 已知函数f(x)=lnx-ax(Ⅰ)若f(x)在[1,e]上的最小值为32,求a的值;(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围. 展开
 我来答
复康路给他4488
推荐于2016-11-19 · TA获得超过230个赞
知道答主
回答量:127
采纳率:0%
帮助的人:130万
展开全部
(Ⅰ)f′(x)=
1
x
+
a
x2
=
x+a
x2
令f′(x)<0得x<-a,令f′(x)>0,得x>-a,
①-a≤1,即a≥-1时,f(x)在[1,e]上单增,f(x)最小值=f(1)=-a=
3
2
,a=-
3
2
<-1,不符,舍;
②-a≥e,即a≤-e时,f(x)在[1,e]上单减,f(x)最小值=f(e)=1-
a
e
=
3
2
,a=-
e
2
>-e,不符,舍;
③1<-a<e,即-e<a<-1时,f(x)在[1,-a]上单减,在[-a,e]上单增,f(x)最小值=f(-a)=ln(-a)+1=
3
2
,a=-e
1
2
,满足;
综上a=-e
1
2

(Ⅱ)由题意,只需a>xlnx-x3,x∈(1,+∞)恒成立,
令h(x)=xlnx-x3,h'(x)=lnx+1-3x2,h''(x)=
1
x
-6x=
1-6x2
x
<0 在(1,+∞)上恒成立,
∴h'(x)在(1,+∞)上单减,又h'(1)=-2<0,
∴h'(x)<0 在(1,+∞)上恒成立,h(x)在(1,+∞)上单减,又h(1)=-1,
∴h(x)<-1在(1,+∞)上恒成立,
∴a≥-1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式