已知数列{an}的前n项和Sn=10n-n2(n∈N*).(I)求数列{an}的通项公式;(II)求Sn的最大值;(III)设b

已知数列{an}的前n项和Sn=10n-n2(n∈N*).(I)求数列{an}的通项公式;(II)求Sn的最大值;(III)设bn=|an|,求数列{bn}的前n项和Tn... 已知数列{an}的前n项和Sn=10n-n2(n∈N*).(I)求数列{an}的通项公式;(II)求Sn的最大值;(III)设bn=|an|,求数列{bn}的前n项和Tn. 展开
 我来答
Curtain390
2014-10-28 · TA获得超过123个赞
知道答主
回答量:183
采纳率:25%
帮助的人:85.9万
展开全部
(I)当n=1时,a1=s1=9;-------------(1分)
当n≥2 时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n,-----(3分)
n=1 时,a1=S1=9 也适合上式
∴an=11-2n(n∈N*).-------------(4分)
(II)解法1:sn=10n?n2=-(n-5)2+25,-------------(6分)
所以,当n=5时,sn取得最大值25.-------------(7分)
解法2:令an=11-2n≥0,得n
11
2

即此等差数列前5项为正数,从第6项起开始为负数,
所以,s5最大,-------------(6分)
故(Snmax=s5=25.-------------(7分)
(III) 令an=11-2n≥0,得n
11
2
.-------------(8分)
Tn=b1+b2+…+bn=|a1|+|a2|+…+|an|
当n≤5时,an>0,bn=an,Tn=a1+a2+…+an=Sn=10n-n2,-------------(9分)
当n>5 时,an<0,bn=-an,Tn=(a1+a2+a3+a4+a5)-(a6+a7+…an)=2S5-Sn=n2-10n+50-------------(11分)
综上可知,数列{bn}的前n项和Tn
10n?n2,n≤5
50?10n+n2,n>5
.-------(12分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式