如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P.(1
如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P.(1)求证:BP=PE;(2)若AC=3PC,求D...
如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P.(1)求证:BP=PE;(2)若AC=3PC,求DBBC的值.
展开
展开全部
解答:证明:(1)作EM⊥AP于M,
∵∠ACB=90°,
∴∠M=∠ACD,
∵AD⊥AE,
∴∠DAE=90°,
∴∠EAM+∠AEM=90°,∠EAM+∠DAC=90°,
∴∠DAC=∠AEM,
在△ADC和△EAM中
∴△ADC≌△EAM,
∴AC=EM,
∵AC=BC,
∴BC=EM,
∵∠ACB=90°,
∴∠BCP=∠M,
在△BCP和△EMP中
∴△BCP≌△EMP(AAS),
∴BP=PE.
(2)∵△BCP≌△EMP,△ADC≌△EAM,
∴CP=PM,AM=DC,
设PC=PM=x,AC=BC=3x,AM=DC=5x,
∴BD=2x,
∴
=
.
∵∠ACB=90°,
∴∠M=∠ACD,
∵AD⊥AE,
∴∠DAE=90°,
∴∠EAM+∠AEM=90°,∠EAM+∠DAC=90°,
∴∠DAC=∠AEM,
在△ADC和△EAM中
|
∴△ADC≌△EAM,
∴AC=EM,
∵AC=BC,
∴BC=EM,
∵∠ACB=90°,
∴∠BCP=∠M,
在△BCP和△EMP中
|
∴△BCP≌△EMP(AAS),
∴BP=PE.
(2)∵△BCP≌△EMP,△ADC≌△EAM,
∴CP=PM,AM=DC,
设PC=PM=x,AC=BC=3x,AM=DC=5x,
∴BD=2x,
∴
DB |
BC |
2 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询