已知数列{an}是首项为a1,公差为d(0<d<2π)的等差数列,若数列{cosan}是等比数列,则其公比为(  

已知数列{an}是首项为a1,公差为d(0<d<2π)的等差数列,若数列{cosan}是等比数列,则其公比为()A.1B.-1C.±1D.2... 已知数列{an}是首项为a1,公差为d(0<d<2π)的等差数列,若数列{cosan}是等比数列,则其公比为(  )A.1B.-1C.±1D.2 展开
 我来答
百度网友7e1ea90dd1
推荐于2016-12-01 · TA获得超过110个赞
知道小有建树答主
回答量:139
采纳率:100%
帮助的人:63.2万
展开全部
∵数列{an}是首项为a1,公差为d(0<d<2π)的等差数列,
∴an=a1+(n-1)d,
∵数列{cosan}是等比数列,
cos(a1+nd)
cos[a1+(n?1)d]
=
cos(a1+d)
cosa1
,①
∴2cosa1cos(a1+nd)=2cos(a1+d)cos[a1+(n-1)d],
积化和差得cos(2a1+nd)+cosnd=cos(2a1+nd)+cos(n-2)d,
∴cos(n-2)d-cosnd=0,
和差化积得2sin[(n-1)d]sind=0,对任意的正整数n都成立,
∴sind=0,0<d<2π,
∴d=π.
由①,公比q=-1.
故选:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式