已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求数列{an},{bn}
已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求数列{an},{bn}的通项公式;(2)求数列{an+...
已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求数列{an},{bn}的通项公式;(2)求数列{an+bn} 的前n项和Sn.
展开
展开全部
(1)设等差数列{ an}的公差为d,等比数列{ bn}的公比为q,则根据题意,得
…(3分)
代入a1=b1=1,整理得
,
消去d,得 2q4-q2-28=0,即q2=4,进而q=2,q=-2(舍去).
所以 d=2.
数列{ an},{ bn}的通项公式分别为an=2n-1,bn=2n-1.…(7分)
(2)因为 an+bn=2n-1+2n-1,所以由分组求和的办法,可得Sn=
+
=2n+n2?1.
…(10分)
|
代入a1=b1=1,整理得
|
消去d,得 2q4-q2-28=0,即q2=4,进而q=2,q=-2(舍去).
所以 d=2.
数列{ an},{ bn}的通项公式分别为an=2n-1,bn=2n-1.…(7分)
(2)因为 an+bn=2n-1+2n-1,所以由分组求和的办法,可得Sn=
n(1+2n?1) |
2 |
1?(1?2n) |
1?2 |
…(10分)
展开全部
(1)设等差数列{ an}的公差为d,等比数列{ bn}的公比为q,则根据题意,得
…(3分)
代入a1=b1=1,整理得
,
消去d,得 2q4-q2-28=0,即q2=4,进而q=2,q=-2(舍去).
所以 d=2.
数列{ an},{ bn}的通项公式分别为an=2n-1,bn=2n-1.…(7分)
(2)因为 an+bn=2n-1+2n-1,所以由分组求和的办法,可得Sn=
+
=2n+n2?1.
…(10分)
|
代入a1=b1=1,整理得
|
消去d,得 2q4-q2-28=0,即q2=4,进而q=2,q=-2(舍去).
所以 d=2.
数列{ an},{ bn}的通项公式分别为an=2n-1,bn=2n-1.…(7分)
(2)因为 an+bn=2n-1+2n-1,所以由分组求和的办法,可得Sn=
n(1+2n?1) |
2 |
1?(1?2n) |
1?2 |
…(10分)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询