(2014?玉林)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段M

(2014?玉林)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(... (2014?玉林)如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由. 展开
 我来答
衣忆声妞飘归1Y
2015-01-26 · TA获得超过755个赞
知道答主
回答量:120
采纳率:0%
帮助的人:135万
展开全部
(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠B,
在△ABM和△BCP中,
AB=BC
∠ABC=∠C
CP=BM

∴△ABM≌△BCP(SAS),
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并将线段AM绕M顺时针旋转90°得到线段MN,
∴AM⊥MN,且AM=MN,
∴MN∥BP,
∴四边形BMNP是平行四边形;

(2)解:BM=MC.
理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠ABC=∠C=90°,
∴△ABM∽△MCQ,
AB
MC
=
AM
MQ

∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
AB
BM
=
AM
MQ

AB
MC
=
AB
BM

∴BM=MC.
caishuaigeda
2015-04-14 · TA获得超过785个赞
知道答主
回答量:113
采纳率:100%
帮助的人:8.8万
展开全部
考点: 相似三角形的判定与性质;平行四边形的判定与性质;正方形的性质.
分析: (1)根据正方形的性质可得AB=BC,∠ABC=∠B,然后利用“边角边”证明△ABM和△BCP全等,根据全等三角形对应边相等可得AM=BP,∠B AM=∠CBP,再求出AM⊥BP,从而得到MN∥BP,然后根据一组对边平行且相等的四边形是平行四边形证明即可;
(2)根 据同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根据相似三角形对应边成比例可得 = ,再求出△AMQ∽△ABM,根据相似三角形对应边成比例可得 = ,从而得到 = ,即可得解.
解答: (1)证明:在正方形ABCD中,AB=BC,∠ABC=∠B,
在△ABM和△BCP中,

∴△ABM≌△BCP(SAS),
∴AM=BP,∠BAM=∠CBP,
∵∠BAM+∠AMB=90°,
∴∠CBP+∠AMB=90°,
∴AM⊥BP,
∵AM并将线段AM绕M顺时针旋转90°得到线段MN,
∴AM⊥MN,且AM=MN,
∴MN∥BP,
∴四边形BMNP是平行四边形;
( 2)解:BM=MC.
理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,
∴∠BAM=∠CMQ,
又∵∠B=∠C=90°,
∴△ABM∽△MCQ,
∴ = ,
∵△MCQ∽△AMQ,
∴△AMQ∽△ABM,
∴ = ,
∴ = ,
∴BM=MC.

点评: 本题考查了相似三角形的判定与性质,正方形的性质,全等三角形的判定与性质,平行四边形的判定,(1)求出两个三角形全等是解题的关键,(2)根据相似于同一个三角形的两个三角形相似求出△AMQ∽△ABM是解题的关键.
莲山课件 原文地址:http://www.5ykj.com/shti/cusan/138296.htm
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友13a1b0f
2018-02-25
知道答主
回答量:4
采纳率:0%
帮助的人:3484
展开全部
噢。就看看看看
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式