数列{an}定义如下:a1=1,a2=3,an+2=2an+1-an+2,n=1,2,…,则它的前n项和为n(n?1)(n+1)3+nn(n?1)(n+1
数列{an}定义如下:a1=1,a2=3,an+2=2an+1-an+2,n=1,2,…,则它的前n项和为n(n?1)(n+1)3+nn(n?1)(n+1)3+n....
数列{an}定义如下:a1=1,a2=3,an+2=2an+1-an+2,n=1,2,…,则它的前n项和为n(n?1)(n+1)3+nn(n?1)(n+1)3+n.
展开
1个回答
展开全部
∵an+2=2an+1-an+2(n=1,2,…),∴an+2-an+1=an+1-an+2,
令bn=an+1-an,则bn+1=bn+2,
∴数列{bn}是以b1=a2-a1=3-1=2为首项,2为公差的等差数列.
∴bn=2+(n-1)×2=2n.
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=
×2+1
=n2-n+1.
∴Sn=(12+22+…+n2)-(1+2+…+n)+n
=
-
+n
=
+n.
故答案为:
+n.
令bn=an+1-an,则bn+1=bn+2,
∴数列{bn}是以b1=a2-a1=3-1=2为首项,2为公差的等差数列.
∴bn=2+(n-1)×2=2n.
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+1
=
n(n?1) |
2 |
=n2-n+1.
∴Sn=(12+22+…+n2)-(1+2+…+n)+n
=
n(n+1)(2n+1) |
6 |
n(n+1) |
2 |
=
n(n?1)(n+1) |
3 |
故答案为:
n(n?1)(n+1) |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询