实践与探索!如图,△ABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数,①若∠ABC=40
实践与探索!如图,△ABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数,①若∠ABC=40°,∠ACB=60°,则∠BIC=______;②若∠...
实践与探索!如图,△ABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数,①若∠ABC=40°,∠ACB=60°,则∠BIC=______;②若∠ABC+∠ACB=80°,则∠BIC=______;③若∠A=120°,则∠BIC=______;④从上述计算中,我们能发现∠BIC与∠A的关系式,并加以证明.
展开
展开全部
①∵∠ABC=40°,∠ACB=60°,∠ABC与∠ACB的平分线交于点I,
∴∠IBC=20°∠ICB=30°,
∴∠BIC=180°-∠IBC-∠ICB=130°;
②∵∠ABC+∠ACB=80°,∠ABC与∠ACB的平分线交于点I,
∴∠IBC+∠ICB=
(∠ABC+∠ACB)=40°,
∴∠BIC=180°-(∠IBC+∠ICB)=140°;
③∵∠A=120°,
∴∠ABC+∠ACB=60°,
又∵∠ABC与∠ACB的平分线交于点I,
∴∠IBC+∠ICB=
(∠ABC+∠ACB)=30°,
∴∠BIC=180°-(∠IBC+∠ICB)=150°;
④∠BIC=90°+
∠A
理由如下:在△ABC中,∠ABC+∠ACB=180°-∠A
∵BI、CI是△ABC内角的平分线
∴∠IBC=
∠ABC,∠ICB=
∠ACB
∴∠IBC+∠ICB=
∠ABC+
∠ACB=
(∠ABC+∠ACB)=
(180°-∠A)
在△IBC中,
∠BIC=180°-(∠IBC+∠ICB)=180°-
(180°-∠A)=90°+
∠A
即:∠BIC=90°+
∠A.
∴∠IBC=20°∠ICB=30°,
∴∠BIC=180°-∠IBC-∠ICB=130°;
②∵∠ABC+∠ACB=80°,∠ABC与∠ACB的平分线交于点I,
∴∠IBC+∠ICB=
1 |
2 |
∴∠BIC=180°-(∠IBC+∠ICB)=140°;
③∵∠A=120°,
∴∠ABC+∠ACB=60°,
又∵∠ABC与∠ACB的平分线交于点I,
∴∠IBC+∠ICB=
1 |
2 |
∴∠BIC=180°-(∠IBC+∠ICB)=150°;
④∠BIC=90°+
1 |
2 |
理由如下:在△ABC中,∠ABC+∠ACB=180°-∠A
∵BI、CI是△ABC内角的平分线
∴∠IBC=
1 |
2 |
1 |
2 |
∴∠IBC+∠ICB=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
在△IBC中,
∠BIC=180°-(∠IBC+∠ICB)=180°-
1 |
2 |
1 |
2 |
即:∠BIC=90°+
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询