已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC

已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°... 已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP.其中正确的有(  )个.A.①②③B.①②④C.①③④D.①②③④ 展开
 我来答
本木兮0378
2014-10-11 · TA获得超过296个赞
知道答主
回答量:120
采纳率:100%
帮助的人:99万
展开全部
解答:解:连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=
1
2
∠BAC=
1
2
×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°,
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
故①正确;
∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°-(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形;
故②正确;
在AC上截取AE=PA,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
PA=PE
∠APO=∠CPE
OP=CP

∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP;
故③正确;
过点C作CH⊥AB于H,
∵∠PAC=∠DAC=60°,AD⊥BC,
∴CH=CD,
∴S△ABC=
1
2
AB?CH,
S四边形AOCP=S△ACP+S△AOC=
1
2
AP?CH+
1
2
OA?CD=
1
2
AP?CH+
1
2
OA?CH=
1
2
CH?(AP+OA)=
1
2
CH?AC,
∴S△ABC=S四边形AOCP
故④正确.
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式