
(2014?涉县一模)如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=
(2014?涉县一模)如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.xB.2C.n...
(2014?涉县一模)如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.xB.2C.nD.3
展开
1个回答
展开全部
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AGE+∠AEG=90°,
∵∠GEF=90°,
∴∠AEG+∠BEF=90°,
∴∠AGE=∠BEF,
∴△AGE∽△BEF,
∴
=
,
∵E为AB的中点,
∴AE=BE,
∵AG=1,BF=2,
∴
=
,
解得:BE=AE=
,
在Rt△AEG中,GE2=AG2+AE2=3,
在Rt△BEF中,EF2=BE2+BF2=6,
∴在Rt△GEF中,GF=
=3.
故选:D.
∴∠A=∠B=90°,
∴∠AGE+∠AEG=90°,
∵∠GEF=90°,
∴∠AEG+∠BEF=90°,
∴∠AGE=∠BEF,
∴△AGE∽△BEF,
∴
AG |
BE |
AE |
BF |
∵E为AB的中点,
∴AE=BE,
∵AG=1,BF=2,
∴
1 |
AE |
AE |
2 |
解得:BE=AE=
2 |
在Rt△AEG中,GE2=AG2+AE2=3,
在Rt△BEF中,EF2=BE2+BF2=6,
∴在Rt△GEF中,GF=
GE2+EF2 |
故选:D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询