(2014?吉林二模)如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=

(2014?吉林二模)如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.(1)若点G是AE的中点,求证... (2014?吉林二模)如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.(1)若点G是AE的中点,求证:AC∥平面BDG;(2)试问点F在线段AB上什么位置时,二面角B-CE-F的余弦值为31313. 展开
 我来答
×_qxhzsb
推荐于2016-12-01 · TA获得超过190个赞
知道答主
回答量:119
采纳率:0%
帮助的人:108万
展开全部
(1)证明:连接CE、BD,设CE∩BD=O,连接OG,
由三角形的中位线定理可得:OG∥AC,
∵AC?平面BDG,OG?平面BDG,
∴AC∥平面BDG.
(2)∵平面ABC⊥平面BCDE,DC⊥BC,
∴DC⊥平面ABC,
∴DC⊥AC,
∵△ABC是正三角形,
∴取BC的中点M,连结MO,则MO∥CD,
∴MO⊥面ABC,
以M为坐标原点,以MB,M0,MA分别为x,y,z轴,建立空间直角坐标系,
∵AB=2,AD=4,∴AM=
3

∴B(1,0,0),C(-1,0,0),A(0,0,
3
),
在Rt△ACD中,CD=
AD2?AC2
42?22
12
=2
3

∴BE=CD=2
3
,即E(1,2
3
,0)
<
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式