在平面直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|,

在平面直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|,若点C(x,y)到点A(1,3),B(6,9... 在平面直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|,若点C(x,y)到点A(1,3),B(6,9)的“直角距离”相等,其中实数x、y满足0≤x≤7,3≤y≤9,则所有满足条件的点C的轨迹的长度之和为______. 展开
 我来答
歪有小爱160
2014-10-22 · TA获得超过186个赞
知道答主
回答量:173
采纳率:100%
帮助的人:59.5万
展开全部
∵点C(x,y)到点A(1,3),B(6,9)的“直角距离”相等,
∴|x-1|+|y-3|=|x-6|+|y-9|,(*)
∵实数x、y满足0≤x≤7,3≤y≤9,
∴当0≤x≤1时,(*)化为1-x+y-3=6-x+9-y,得到y=
17
2
,此时点C的轨迹长度=1;
当1≤x≤6时,(*)化为x-1+y-3=6-x+9-y,化为2x+2y=19,取点M(1,
17
2
)
,N(6,
7
2
)
,此时点C的轨迹长度=|MN|=
(1?6)2+(
17
2
?
7
2
)2
=5
2

当6≤x≤7时,(*)化为x-1+y-3=x-6+9-y,得到y=
7
2
,此时点C的轨迹长度=1.
综上可得:所有满足条件的点C的轨迹的长度之和为 5
2
+2.
故答案为:5
2
+2.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式