第五题,求解,定积分。。
展开全部
:原式=∫(-π/4,π/4)(sinx)^2/[1+e^(-x)]dx (∫(-π/4,π/4)表示从-π/4到π/4积分)
=∫(-π/4,0)(sinx)^2/[1+e^(-x)]dx+∫(0,π/4)(sinx)^2/[1+e^(-x)]dx
=-∫(π/4,0)(sinx)^2/(1+e^x)dx+∫(0,π/4)(sinx)^2/[1+e^(-x)]dx (第一个积分用-x代换x得)
=∫(0,π/4)(sinx)^2/(1+e^x)dx+∫(0,π/4)e^x(sinx)^2/(1+e^x)dx (第二个积分分子分母同乘e^x得)
=∫(0,π/4)(1+e^x)(sinx)^2/(1+e^x)dx
=∫(0,π/4)(sinx)^2dx
=1/2∫(0,π/4)[1-cos(2x)]dx
=1/2[x-1/2sin(2x)]|(0,π/4)
=1/2(π/4-1/2)
=(π-2)/8
=∫(-π/4,0)(sinx)^2/[1+e^(-x)]dx+∫(0,π/4)(sinx)^2/[1+e^(-x)]dx
=-∫(π/4,0)(sinx)^2/(1+e^x)dx+∫(0,π/4)(sinx)^2/[1+e^(-x)]dx (第一个积分用-x代换x得)
=∫(0,π/4)(sinx)^2/(1+e^x)dx+∫(0,π/4)e^x(sinx)^2/(1+e^x)dx (第二个积分分子分母同乘e^x得)
=∫(0,π/4)(1+e^x)(sinx)^2/(1+e^x)dx
=∫(0,π/4)(sinx)^2dx
=1/2∫(0,π/4)[1-cos(2x)]dx
=1/2[x-1/2sin(2x)]|(0,π/4)
=1/2(π/4-1/2)
=(π-2)/8
更多追问追答
追答
望采纳!
详细步骤。不懂可追问,有个人回答的是错误答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
提示:
设原式为a
a=∫(-π/4,π/4) e^xsin²x/(e^x+1) dx
对于原式,令x=-t
a=∫(π/4,-π/4) sin²(-t)/(e^t+1) (-dt)
=∫(-π/4,π/4) sin²t/(e^t+1) (dt)
=∫(-π/4,π/4) sin²x/(e^x+1) (dx)
所以
a+a=2a
=∫(-π/4,π/4) (sin²x+e^xsin²x)/(e^x+1) (dx)
=∫(-π/4,π/4) sin²x(dx)
=2∫(0,π/4) sin²x(dx)
下面自己解。
设原式为a
a=∫(-π/4,π/4) e^xsin²x/(e^x+1) dx
对于原式,令x=-t
a=∫(π/4,-π/4) sin²(-t)/(e^t+1) (-dt)
=∫(-π/4,π/4) sin²t/(e^t+1) (dt)
=∫(-π/4,π/4) sin²x/(e^x+1) (dx)
所以
a+a=2a
=∫(-π/4,π/4) (sin²x+e^xsin²x)/(e^x+1) (dx)
=∫(-π/4,π/4) sin²x(dx)
=2∫(0,π/4) sin²x(dx)
下面自己解。
追问
嗯嗯,谢谢!!解答!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询