第九题怎么做 写出过程
展开全部
原式=sin50(1+tan60tan10)
=sin50(tan60-tan10)/tan(60-10)
=cos50(tan60-tan10)
=cos50(sin60cos10-sin10cos50)/cos60cos10
=cos50sin50/cos60cos10
=cos10/(2*1/2*cos10)
=cos10/cos10
=1
=sin50(tan60-tan10)/tan(60-10)
=cos50(tan60-tan10)
=cos50(sin60cos10-sin10cos50)/cos60cos10
=cos50sin50/cos60cos10
=cos10/(2*1/2*cos10)
=cos10/cos10
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+√3tan10
=1+√3sin10/cos10
=(cos10+√3sin10)/cos10
=2sin(10+30)/cos10
=2sin40/cos10
sin50(1+√3tan10)
=(2sin40sin50)/cos10
=[cos(50-40)-cos(50+40)]/cos10
=cos10/cos10
=1
=1+√3sin10/cos10
=(cos10+√3sin10)/cos10
=2sin(10+30)/cos10
=2sin40/cos10
sin50(1+√3tan10)
=(2sin40sin50)/cos10
=[cos(50-40)-cos(50+40)]/cos10
=cos10/cos10
=1
追答
希望能够帮到你,望采纳
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询