如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半
如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.小题1:在图(3)正方形ABCD内画一...
如图(1),凸四边形ABCD,如果点P满足∠APD=∠APB=α.且∠BPC=∠CPD=β,则称点P为四边形ABCD的一个半等角点.小题1:在图(3)正方形ABCD内画一个半等角点P,且满足α≠β;小题2:在图(4)四边形ABCD中画出一个半等角点P,保留画图痕迹(不需写出画法);小题3:若四边形ABCD有两个半等角点P 1 、P 2 (如图(2)),证明线段P 1 P 2 上任一点也是它的半等角点.
展开
展开全部
(1)根据题意可知,所画的点P在AC上且不是AC的中点和AC的端点.因为在图形内部,所以不能是AC的端点,又由于α≠β,所以不是AC的中点. (2)画点B关于AC的对称点B’,延长DB’交AC于点P,点P为所求.(因为对称的两个图形完全重合) (3)先连P 1 A、P 1 D、P 1 B、P 1 C和P 2 D、P 2 B,根据题意∠AP 1 D=∠AP 1 B,∠DP 1 C=∠BP 1 C∴∠AP 1 B+∠BP 1 C=180度.∴P 1 在AC上,同理,P 2 也在AC上,再利用ASA证明△DP 1 P 2 ≌△BP 1 P 2 而,那么△P 1 DP 2 和△P 1 BP 2 关于P 1 P 2 对称,P是对称轴上的点,所以∠DPA=∠BPA,∠DPC=∠BPC.即点P是四边形的半等角点 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询