(2014?绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动
(2014?绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与...
(2014?绍兴)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
展开
1个回答
展开全部
(1)∵点P与点B重合,点B的坐标是(2,1),
∴点P的坐标是(2,1).
∴PA的长为2;
(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.
∵点A的纵坐标与点B的横坐标相等,
∴OA=AB.
∵∠OAB=90°,
∴∠AOB=∠ABO=45°.
∵∠AOC=90°,
∴∠POC=45°.
∵PM⊥x轴,PN⊥y轴,
∴PM=PN,∠ANP=∠CMP=90°.
∴∠NPM=90°.
∵∠APC=90°.
∴∠APN=90°-∠APM=∠CPM.
在△ANP和△CMP中,
,
∴△ANP≌△CMP.
∴PA=PC.
∴PA:PC的值为1:1;
(3)①若点P在线段OB的延长线上,
过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,
PM与直线AC的交点为F,如图2所示.
∵∠APN=∠CPM,∠ANP=∠CMP,
∴△ANP∽△CMP.
∴
=
.
∵∠ACE=∠AEC,
∴AC=AE.
∵AP⊥PC,
∴EP=CP.
∵PM∥y轴,
∴AF=CF,OM=CM.
∴FM=
OA.
设OA=x,
∵PF∥OA,
∴△PDF∽△ODA.
∴
=
,
∵PD=2OD,
∴PF=2OA=2x,FM=
x.
∴PM=
x.
∵∠APC=90°,AF=CF,
∴AC=2PF=4x.
∵∠AOC=90°,
∴OC=
x.
∵∠PNO=∠NOM=∠OMP=90°,
∴四边形PMON是矩形.
∴PN=OM=
x.
∴PA:PC=PN:PM=
∴点P的坐标是(2,1).
∴PA的长为2;
(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.
∵点A的纵坐标与点B的横坐标相等,
∴OA=AB.
∵∠OAB=90°,
∴∠AOB=∠ABO=45°.
∵∠AOC=90°,
∴∠POC=45°.
∵PM⊥x轴,PN⊥y轴,
∴PM=PN,∠ANP=∠CMP=90°.
∴∠NPM=90°.
∵∠APC=90°.
∴∠APN=90°-∠APM=∠CPM.
在△ANP和△CMP中,
|
∴△ANP≌△CMP.
∴PA=PC.
∴PA:PC的值为1:1;
(3)①若点P在线段OB的延长线上,
过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,
PM与直线AC的交点为F,如图2所示.
∵∠APN=∠CPM,∠ANP=∠CMP,
∴△ANP∽△CMP.
∴
PA |
PC |
PN |
PM |
∵∠ACE=∠AEC,
∴AC=AE.
∵AP⊥PC,
∴EP=CP.
∵PM∥y轴,
∴AF=CF,OM=CM.
∴FM=
1 |
2 |
设OA=x,
∵PF∥OA,
∴△PDF∽△ODA.
∴
PF |
OA |
PD |
OD |
∵PD=2OD,
∴PF=2OA=2x,FM=
1 |
2 |
∴PM=
5 |
2 |
∵∠APC=90°,AF=CF,
∴AC=2PF=4x.
∵∠AOC=90°,
∴OC=
15 |
∵∠PNO=∠NOM=∠OMP=90°,
∴四边形PMON是矩形.
∴PN=OM=
| ||
2 |
∴PA:PC=PN:PM=
|