如图,已知⊙O的直径AB的长是4cm,点C在⊙O上,过点C的直径与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
如图,已知⊙O的直径AB的长是4cm,点C在⊙O上,过点C的直径与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求弦BC的长...
如图,已知⊙O的直径AB的长是4cm,点C在⊙O上,过点C的直径与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求弦BC的长.
展开
展开全部
(1)∵OA=OC
∴∠A=∠ACO
又∵∠COB=∠A+∠ACO,
∴∠COB=2∠A
又∵∠COB=2∠PCB
∴∠A=∠ACO=∠PCB
∵AB是⊙O的直径
∴∠ACO+∠OCB=90°
∴∠PCB+∠OCB=90°
∴即OC⊥CP
而OC是⊙O的半径,
∴PC是⊙O的切线.
(2)∵AC=PC
∴∠A=∠P
∵∠A=∠ACO=∠PCB
∴∠A=∠ACO=∠PCB=∠P
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB
∴∠COB=∠CBO
∴BC=OC
∴BC=
×4=2(cm)
∴∠A=∠ACO
又∵∠COB=∠A+∠ACO,
∴∠COB=2∠A
又∵∠COB=2∠PCB
∴∠A=∠ACO=∠PCB
∵AB是⊙O的直径
∴∠ACO+∠OCB=90°
∴∠PCB+∠OCB=90°
∴即OC⊥CP
而OC是⊙O的半径,
∴PC是⊙O的切线.
(2)∵AC=PC
∴∠A=∠P
∵∠A=∠ACO=∠PCB
∴∠A=∠ACO=∠PCB=∠P
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB
∴∠COB=∠CBO
∴BC=OC
∴BC=
1 |
2 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询