已知函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),函数f(x)的最小值为y0,且y0∈[x1,x2),

已知函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),函数f(x)的最小值为y0,且y0∈[x1,x2),则函数y=f(f(x))的零点个数是()... 已知函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),函数f(x)的最小值为y0,且y0∈[x1,x2),则函数y=f(f(x))的零点个数是(  )A.3B.4C.3或4D.2或3 展开
 我来答
爪机粉群00BA2
2014-10-13 · TA获得超过140个赞
知道答主
回答量:197
采纳率:0%
帮助的人:64.7万
展开全部
如图所示,
∵函数f(x)=ax2+bx+c(a>0)的零点为x1,x2(x1<x2),∴△=b2-4ac>0.
由f(f(x))=af2(x)+bf(x)+c=0,∵△>0,
∴f(x)=x1或f(x)=x2
∵函数f(x)的最小值为y0,且y0∈[x1,x2),画出直线y=x2.y=x1
则直线y=x2.与y=f(x)必有两个交点,此时f(x)=x2.有2个实数根,即函数y=f(f(x))由两个零点.
直线y=x1与y=f(x)可能有一个交点或无交点,此时f(x)=x1有一个实数根x=?
b
2a
或无实数根.
综上可知:函数y=f(f(x))的零点由2个或3个.
故选D.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式