如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速... 如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.(1)求直线AB的解析式;(2)求y与x的函数关系式;(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的18;(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由. 展开
 我来答
htsu846
推荐于2016-08-19 · 超过58用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:136万
展开全部
(1)设直线AB的解析式为y=kx+b,
A点坐标为(24,0),B为(0,12),
把A、B两点的坐标代入上式,得:
24k+b=0
b=12

解得
k=?
1
2
b=12

∴y=?
1
2
x+12


(2)∵SOMP=
1
2
OM?OP

∴y=
1
2
(12?x)
?x
即y=-
1
2
x2+6x


(3)∵SAOB=
1
2
×OA?OB=144

1
8
SAOB=18,即y=18,
当-
1
2
x2+6x=18时

解得:x=6;

(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,
当x=-
6
2×(?
1
2
)
=6时,S△POM=y有最大值.
此时OP=6,OM=12-x=6
∴△OMP是等腰直角三角形.
∵将△POM沿PM所在直线翻折后得到△POM.
∴四边形OPDM是正方形
∴D(6,6),
把D(6,6)代入y=?
1
2
x+12

x=6时,y=-
1
2
×6+12=9≠6
∴点D不在直线AB上.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式