已知函数f(x)=ex-ax2(a∈R).(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x)为R上
已知函数f(x)=ex-ax2(a∈R).(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x)为R上的单调递增函数,试求a的范围;(3)若函数f(x)不...
已知函数f(x)=ex-ax2(a∈R).(1)求函数f(x)在点P(0,1)处的切线方程;(2)若函数f(x)为R上的单调递增函数,试求a的范围;(3)若函数f(x)不出现在直线y=x+1的下方,试求a的最大值.
展开
展开全部
(1)函数f(x)=ex-ax2.则导数f′(x)=ex-2ax,
∴f′(0)=1,
∴函数f(x)在点P(0,1)处的切线方程是y=x+1;
(2)函数f(x)为R上的单调递增函数即
导数f′(x)=ex-2ax≥0恒成立,
画出曲线y=ex和直线y=2ax,即要求曲线恒在直线的上方.
设直线与曲线相切时的切点为(m,n),则n=2am,n=em,em=2a,
解得m=1,n=e,a=
,
由图象观察得a的范围是[0,
];
(3)由题意可知,f(x)≥x+1恒成立,记F(x)=ex-ax2-x-1,
即F(x)≥0恒成立,
若a>0,则x<-
<0,F(x)<1-x(ax+1)-1<0,与F(x)≥0矛盾,
∴a≤0,F′(x)=ex-2ax-1,
则x>0时,F′(x)>e0-1=0,x<0时,F′(x)<e0-1=0,
∴x=0为F(x)的最小值点,即最小值为0,即F(x)≥0恒成立,
故函数f(x)不出现在直线y=x+1的下方,a的最大值为0.
∴f′(0)=1,
∴函数f(x)在点P(0,1)处的切线方程是y=x+1;
(2)函数f(x)为R上的单调递增函数即
导数f′(x)=ex-2ax≥0恒成立,
画出曲线y=ex和直线y=2ax,即要求曲线恒在直线的上方.
设直线与曲线相切时的切点为(m,n),则n=2am,n=em,em=2a,
解得m=1,n=e,a=
e |
2 |
由图象观察得a的范围是[0,
e |
2 |
(3)由题意可知,f(x)≥x+1恒成立,记F(x)=ex-ax2-x-1,
即F(x)≥0恒成立,
若a>0,则x<-
1 |
a |
∴a≤0,F′(x)=ex-2ax-1,
则x>0时,F′(x)>e0-1=0,x<0时,F′(x)<e0-1=0,
∴x=0为F(x)的最小值点,即最小值为0,即F(x)≥0恒成立,
故函数f(x)不出现在直线y=x+1的下方,a的最大值为0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询