如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE=∠CHG吗?为什么

如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE=∠CHG吗?为什么?... 如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE=∠CHG吗?为什么? 展开
 我来答
诚挚还成功的萨摩6266
推荐于2016-01-21 · 超过61用户采纳过TA的回答
知道答主
回答量:108
采纳率:100%
帮助的人:117万
展开全部
∠AHE=∠CHG.
理由:∵AD、BE、CF为△ABC的角平分线,
∴可设∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,
则2x+2y+2z=180°,
即x+y+z=90°,
在△AHB中,
∵∠AHE是△AHB的外角,
∴∠AHE=∠BAD+∠ABE=x+y=90°-z,
在△CHG中,∠CHG=90°-z,
∴∠AHE=∠CHG.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式