设方程 e^z-xyz=0.确定函数z=f求z对 x的二阶偏导数,怎么求要
展开全部
f(x,y,z)=e^z-xyz=0
∂z/∂x=-(∂f/∂x)/(∂f/∂z)=-yz/(e^z-xy)=z/[x(z-1)]
∂²z/∂x²=[∂z/∂x x(z-1)-z(z-1+x∂z/∂x)]/[x(z-1)]^2=z/[x(z-1)]x(z-1)-z(z-1+xz/{x(z-1)})]/[x(z-1)]^2
=[z-z^2+z-z^2/(z-1)]/[x(z-1)]^2
=[2z(1-z)-z^2/(z-1)]/[x(z-1)]^2
二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f(x)的二阶导数。
(1)切线斜率变化的速度
(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)
∂z/∂x=-(∂f/∂x)/(∂f/∂z)=-yz/(e^z-xy)=z/[x(z-1)]
∂²z/∂x²=[∂z/∂x x(z-1)-z(z-1+x∂z/∂x)]/[x(z-1)]^2=z/[x(z-1)]x(z-1)-z(z-1+xz/{x(z-1)})]/[x(z-1)]^2
=[z-z^2+z-z^2/(z-1)]/[x(z-1)]^2
=[2z(1-z)-z^2/(z-1)]/[x(z-1)]^2
二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f(x)的二阶导数。
(1)切线斜率变化的速度
(2)函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)
展开全部
e^Z = xyZ (1) 两边对x求偏导数
Z'x e^Z = yZ + xyZ'x (2)
Z'x = yZ/(e^Z - xy) (3)
Z"xx = y[Z'x(e^Z -xy)-Z(e^Z Z'x -y)]/(e^Z - xy)^2 (4)
将(3)代入(4) 就得到 Z"xx .
Z'x e^Z = yZ + xyZ'x (2)
Z'x = yZ/(e^Z - xy) (3)
Z"xx = y[Z'x(e^Z -xy)-Z(e^Z Z'x -y)]/(e^Z - xy)^2 (4)
将(3)代入(4) 就得到 Z"xx .
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询