将二进制数110101转换为十进制数,要步骤谢谢 20
二进制110101=十进制(1X2的5次方+1X2的4次方+0X2的3次方+。。。+1=32+16+4+1=53)
基本简介
二进制是计算技术中广泛采用的一种数,二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
二进制数
二进制数是逢2进位的进位制,0、1是基本算符;计算机运算基础采用二进制。电脑的基础是二进制。在早期设计的常用的进制主要是十进制(因为我们有十个手指,所以十进制是比较合理的选择,用手指可以表示十个数字,0的概念直到很久以后才出现,所以是1-10而不是0-9。
电子计算机出现以后,使用电子管来表示十种状态过于复杂,所以所有的电子计算机中只有两种基本的状态,开和关。也就是说,电子管的两种状态决定了以电子管为基础的电子计算机采用二进制来表示数字和数据。
常用的进制还有8进制和16进制,在电脑科学中,经常会用到16进制,而十进制的使用非常少,这是因为16进制和二进制有天然的联系:4个二进制位可以表示从0到15的数字,这刚好是1个16进制位可以表示的数据,也就是说,将二进制转换成16进制只要每4位进行转换就可以了。
二进制的“00101000”直接可以转换成16进制的“28”。一个字是电脑中的基本存储单元,根据计算机字长的不同,字具有不同的位数,现代电脑的字长一般是32位的,也就是说,一个字的位数是32。字节是8位的数据单元,一个字节可以表示0-255的数据。对于32位字长的现代电脑,一个字等于4个字节,对于早期的16位的电脑,一个字等于2个字节。
加法 0+0=0,0+1=1+0=1,1+1=10
减法 0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010
乘法 0×0=0,0×1=1×0=0,1×1=1
除法 0÷1=0,1÷1=1
只有0和1两个数码,基数为二。
二进制110101=十进制(1X2的5次方+1X2的4次方+0X2的3次方+。。。+1=32+16+4+1=53)
基本简介
二进制是计算技术中广泛采用的一种数,二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
二进制数
二进制数是逢2进位的进位制,0、1是基本算符;计算机运算基础采用二进制。电脑的基础是二进制。在早期设计的常用的进制主要是十进制(因为我们有十个手指,所以十进制是比较合理的选择,用手指可以表示十个数字,0的概念直到很久以后才出现,所以是1-10而不是0-9。
电子计算机出现以后,使用电子管来表示十种状态过于复杂,所以所有的电子计算机中只有两种基本的状态,开和关。也就是说,电子管的两种状态决定了以电子管为基础的电子计算机采用二进制来表示数字和数据。
常用的进制还有8进制和16进制,在电脑科学中,经常会用到16进制,而十进制的使用非常少,这是因为16进制和二进制有天然的联系:4个二进制位可以表示从0到15的数字,这刚好是1个16进制位可以表示的数据,也就是说,将二进制转换成16进制只要每4位进行转换就可以了。
二进制的“00101000”直接可以转换成16进制的“28”。一个字是电脑中的基本存储单元,根据计算机字长的不同,字具有不同的位数,现代电脑的字长一般是32位的,也就是说,一个字的位数是32。字节是8位的数据单元,一个字节可以表示0-255的数据。对于32位字长的现代电脑,一个字等于4个字节,对于早期的16位的电脑,一个字等于2个字节。
加法 0+0=0,0+1=1+0=1,1+1=10
减法 0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010
乘法 0×0=0,0×1=1×0=0,1×1=1
除法 0÷1=0,1÷1=1
只有0和1两个数码,基数为二。
=32+16+0+4+0+1=53
按照顺序计算,不要按照优先级