物理问题,急需回答,关于平抛运动的。
如图所示,从倾角为θ的斜坡顶端以初速度v0水平抛出一小球,不计空气阻力,设斜坡足够长,则小球抛山后离开斜坡的最大距离H是多少?图在这http://www.wulitiku...
如图所示,从倾角为θ的斜坡顶端以初速度v0水平抛出一小球,不计空气阻力,设斜坡足够长,则小球抛山后离开斜坡的最大距离H是多少?
图在这http://www.wulitiku.cn/news.asp?id=4021
需要详细解答。 展开
图在这http://www.wulitiku.cn/news.asp?id=4021
需要详细解答。 展开
2个回答
展开全部
将小球初速度分解为垂直于斜面和平行于斜面,其加速度g也分解为垂直于斜面和平行于斜面。显然,垂直于斜面的分速度使小球远离斜面。所以当垂直于斜面的分速度为0时,小球离斜面最远。设此时间为t1。
对垂直于斜面方向列方程:
v0 sin a = g * cos a * t1 ,
得 t1 = v0 tan a / g .
由于斜面足够长,所以小球落在斜面上,在平行斜面的方向上,小球做匀加速运动,加速度为g在平行斜面方向上的分加速度;由于小球在垂直斜面方向上的加速度为g在垂直斜面方向上的分加速度,大小恒定,方向相反,所以小球远离斜面的时间等于靠近斜面的时间,所以小球在空中的总时间为
t = 2 * t1 ,
所以所求距离为
s = v0 * cos a * t + 1/2 * g * sin a * t^2
= 2 * v0^2 * sin a / [ g * (cos a)^2]
对垂直于斜面方向列方程:
v0 sin a = g * cos a * t1 ,
得 t1 = v0 tan a / g .
由于斜面足够长,所以小球落在斜面上,在平行斜面的方向上,小球做匀加速运动,加速度为g在平行斜面方向上的分加速度;由于小球在垂直斜面方向上的加速度为g在垂直斜面方向上的分加速度,大小恒定,方向相反,所以小球远离斜面的时间等于靠近斜面的时间,所以小球在空中的总时间为
t = 2 * t1 ,
所以所求距离为
s = v0 * cos a * t + 1/2 * g * sin a * t^2
= 2 * v0^2 * sin a / [ g * (cos a)^2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询