求三次方计算公式
三次方公式有:
1、(A+B)³=A³+3A²B+3AB²+B³
2、(A-B)³=A³-3A²B+3AB²-B³
3、A³+B³=(A+B)(A²-AB+B²)
4、A³-B³=(A-B)(A²+AB+B²)
5、A³+B³+C³-3ABC=(A+B+C)(A²+B²+C²-AB-BC-AC)
性质:
(1)正数的立方根是正数,负数的立方根是负数,0的立方根是0 。
(2)在实数范围内,任何实数的立方根只有一个。
(3)在实数范围内,负数不能开平方,但可以开立方。
(4)立方与开立方运算,互为逆运算。
(5)在复数范围内,任何非0的数都有且仅有3个立方根(一实根,二共轭虚根),它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
(6)在复数范围内,负数既可以开平方,又可以开立方。
扩展资料:
区别:
(1)定义不同
平方根:如果一个数的平方等于 a,那么这个数就叫 a 的平方根或二次方根,即如果 ,那么 x 就叫 a 的平方根;
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根,即如果,那么 x 叫做 a 的立方根。
(2)表示方法不同
平方根用“ ”表示,根指数 2 可以省略;算术平方根用“”表示,根指数 2 可以省略;
(3)存在的条件不同
a 有平方根的条件:a≥0,因为正数、零、负数的平方都不是负数,故负数没有平方根和算术平方根;
a 有立方根的条件:a 为全体实数,即正数、负数、零均可。
(4)结果不同
平方根的结果除0之外,有两个互为相反的结果;
立方根的结果有3个(除0以外,且在复数范围内),3个立方根均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。
两者联系:二者都是与乘方运算互为逆运算。
公式如下:
立方和公式:
a^3+b^3 = (a+b) (a^2-ab+b^2) 立方和立方差公式
立方差公式:
a^3-b^3=(a-b) (a^2+ab+b^2)
3项立方和公式:
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
例如,A=5,即求
5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8)
初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式:
第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。
即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。
第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。
即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。
第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.
第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099
这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值
偏小,输出值自动转大。即5=1.7099^3;
当然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一个,都是X1 = 1.7 > 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5^2;-1.5)1/3=1.7。
(A-B)³=A³-3A²B+3AB²-B³
A³+B³=(A+B)(A²-AB+B²)
A³-B³=(A-B)(A²+AB+B²)