求个不定积分:I = ∫xdx/√[1+x^2+√(1+x^2)^3]
展开全部
你好,感谢您的求助!
下面直接化简:
I=∫xdx/√[1+x^2+√(1+x^2)^3]
=∫xdx/√(1+x^2)√[1+√(1+x^2)]
=1/2 ∫d(1+x^2)/√(1+x^2)√[1+√(1+x^2)]
=∫d[1+√(1+x^2)]/√[1+√(1+x^2)]
=2√[1+√(1+x^2)]+C
上面的解题思路主要是凑微分的,相对来说对数学思维的要求较大,还有个方法是将根式开出来,换元令t^m=1+x^2(m的值视题目的根式次数决定)
下面直接化简:
I=∫xdx/√[1+x^2+√(1+x^2)^3]
=∫xdx/√(1+x^2)√[1+√(1+x^2)]
=1/2 ∫d(1+x^2)/√(1+x^2)√[1+√(1+x^2)]
=∫d[1+√(1+x^2)]/√[1+√(1+x^2)]
=2√[1+√(1+x^2)]+C
上面的解题思路主要是凑微分的,相对来说对数学思维的要求较大,还有个方法是将根式开出来,换元令t^m=1+x^2(m的值视题目的根式次数决定)
来自:求助得到的回答
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询