讨论函数极限时,在什么情况下应该考虑左右极限

 我来答
愈君己琲瓃
2020-04-28 · TA获得超过3864个赞
知道大有可为答主
回答量:3103
采纳率:28%
帮助的人:250万
展开全部
有三种情况下,需要考虑左右极限:
1、分段函数(piecewise
function)的间断点,需要考虑。无论是什么类型的间断点,都得考虑左右极限。
2、定积分时,若是广义积分、暇积分,不得不考虑单侧极限。是积分积出来之后才考虑单侧极限。
3、连续性问题,尤其是证明题,证明连续性,一定要考虑。
函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
PasirRis白沙
高粉答主

推荐于2017-09-08 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:3049万
展开全部
.
1、如果是计算性证明,在分段函数的情况下,
无论连续不连续,都一定得分左右证明;
.
2、在连续性的情况下,可以整体证明,也可以
分别证明。整体性证明是指无需分左右就能
得出结论的情况,这种情况比比皆是,任何
一个函数在定义域内都是如此。
.
3、若是用定义证明,也就是ε-δ 方法证明时,
得到的是 δ 对应于 ε 的区间,无需画蛇添足
再去多此一举。多此一举者反而显得对 ε-δ
方法并没有真正理解。
.
定义性证明就是原理性证明。

.
4、题目类型属于连续性continuity一类的,
题目指明了要讨论左右极限,就得考虑。
.
另一类题目并非是连续性的,而是应用性的,
例如,寻找竖直渐近线、广义积分等等等等,
都得考虑单侧极限。
.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式